期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
FORMATION OF THE CRUSTAL MELTING LAYER AND ITS RELATIONS TO THE DEFORMATION OF CONTINENTAL CRUST:AN EXAMPLEFROM SOUTHEAST CHINA
1
作者 CHEN Guo neng (Department of Earth Sciences, Zhongshan University, Guangzhou 510275, China) 《Geotectonica et Metallogenia》 2001年第1期65-66,共2页
Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protoli... Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China. 展开更多
关键词 FORMATION OF THE crustal melting LAYER AND ITS RELATIONS TO THE DEFORMATION OF CONTINENTAL CRUST ITS
下载PDF
Intrusion-related Gold Deposits in Egypt
2
作者 Nagy Shawky BOTROS 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期1033-1055,共23页
Intrusion-related gold deposits(IRGDs)occur in the Eastern Desert(ED)of Egypt within magmatic districts that are exploited for tungsten and tin mineralization.IRGDs and intrusion-related rare metal deposits(IRRMDs)are... Intrusion-related gold deposits(IRGDs)occur in the Eastern Desert(ED)of Egypt within magmatic districts that are exploited for tungsten and tin mineralization.IRGDs and intrusion-related rare metal deposits(IRRMDs)are almost invariably linked with the late to post collisional Younger Granites(YGs)that have three successive phases(Ⅰ,ⅡandⅢ).At~635–630 Ma,the ED underwent a transition in deformation style from compressional to extensional and a switch from subduction with crustal thickening to delamination with crustal thinning.This transition was concurrent with the emplacement of a short magmatic pulse(~635–630 Ma)that represents a transition between orogenic gold deposits and IRGDs.K-rich calc alkaline granites(phaseⅠandⅡof the YGs)hosting IRGDs like the Hangalia deposit were emplaced during the time span 630–610 Ma.Alkaline magmatism began at 610 Ma,coexisting with the K-rich calc-alkaline magmatism over the 610–590 Ma time span,where the Fawakhir(598±3 Ma)and Um Had(596±2 Ma)granites that host the IRGDs were emplaced.In time,the alkaline magmatism became more alkaline giving rise to phaseⅢof the YGs that hosts IRRMDs.A distinct metallogenic epoch comprising both IRGDs and IRRMDs,was undergoing extreme growth at~600 Ma. 展开更多
关键词 intrusion-related gold deposits intrusion-related rare metal deposits DELAMINATION crustal melting metallogenic epoch ~600 Ma Younger Granites
下载PDF
Crust-derived felsic magmatism in the Emeishan large igneous Province:New evidence from zircon U-Pb-Hf-O isotope from the Yangtze Block,China 被引量:1
3
作者 Hao Zou Cheng-Hui Hu +7 位作者 M.Santosh Hai-Feng Chen Chang-Cheng Huang Xin-Wei Chen Hong-Kui Li Xin Jin Li-Ming Yu Min Li 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第3期139-155,共17页
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic ro... Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma. 展开更多
关键词 Emeishan Large Igneous Province Mafic and felsic magmatism Zircon U-Pb-Hf-O isotopes crustal partial melting Mantle plume
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部