Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryog...Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments.展开更多
Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising app...Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.展开更多
The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest ...The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest of researchers to work on environmentally friendly cooling conditions such as cryogenic cooling.Here,the effect of cutting speed and feed rate on the machining performance of the AISI‑L6 tool steel is investigated under cryogenic cooling conditions.Then,the L9 Taguchi based grey relational analysis(GRA)is conducted to investigate the essential machining indices such as cutting energy,surface roughness,tool wear,and material removal rate(MRR).The results indicate that the cutting speed of 160 m/min and feed rate of 0.16 mm/r are the optimum parameters that significantly improves the machining performance of AISI‑L6 tool steel.展开更多
In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grindin...In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grinding force, surface morphology, and surface roughness were investigated. At the same time, the effect of cryogenic cooling was also compared with that of conventional wet grinding. The experimental results indicated that cryogenic cooling is effective in enhancing supporting function of Al matrix to the SiC particles and improving surface quality. Additionally, the brittle fracture of SiC particles was suppressed and some ductile streaks on SiC particle could be observed.展开更多
基金supported by the ARDB,DRDO,New Delhi[Sanction Code:MSRB/TM/ARDB/GIA/19-20/044].
文摘Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments.
文摘Titanium alloys are one of the most important design materials for the aircraft industry. The high strength-to-density-ratio and the compatibility with carbon fibre reinforced plastic are the reasons for a raising application in this field. The outstanding properties lead to challenging machining processes. High strength and low heat conductivity affect high mechanical and thermal loads for the cutting edge. Thus, the machining process is characterized by a rapid development of tool wear even at low cutting parameter. To reach a sufficient productivity it is necessary to dissipate the resulting heat from the cutting edge by a coolant. Therefore the cryogenic machining of two different titanium alloys is investigated in this work. The results point out the different behavior of the machining processes under cryogenic conditions because of the reduced thermal load for the cutting tool. According to this investigation, the cryogenic cooling with COa enables an increase of the tool life in comparison to emulsion based cooling principles when machining the α+β-titanium alloy Ti-6Al-4V. The machining process of the high strength titanium alloy Ti-6Al-2Sn-4Zr-6Mo requires an additional lubrication realized by a minimum quantity lubrication (MQL) with oil. This combined cool- ing leads to a smoother chip underside and to slender shear bands between the different chip segments.
基金the National Natural Science Foundation of China(No.51922066)the Natural Science Outstanding Youth Fund of Shandong Province(No.ZR2019JQ19)+1 种基金the National Key Research and Development Program(No.2018YFB2002201)the Key Laboratory of High‑Efficiency and Clean Mechanical Manufacture at Shandong University,Ministry of Education。
文摘The application of cutting fluid is significantly increased in the machining sector to improve productivity.However,the inherent characteristics of cutting fluids on ecology,environment,and society shift the interest of researchers to work on environmentally friendly cooling conditions such as cryogenic cooling.Here,the effect of cutting speed and feed rate on the machining performance of the AISI‑L6 tool steel is investigated under cryogenic cooling conditions.Then,the L9 Taguchi based grey relational analysis(GRA)is conducted to investigate the essential machining indices such as cutting energy,surface roughness,tool wear,and material removal rate(MRR).The results indicate that the cutting speed of 160 m/min and feed rate of 0.16 mm/r are the optimum parameters that significantly improves the machining performance of AISI‑L6 tool steel.
基金financially supported by the National Natural Science Foundation of China (No.50975184)
文摘In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grinding force, surface morphology, and surface roughness were investigated. At the same time, the effect of cryogenic cooling was also compared with that of conventional wet grinding. The experimental results indicated that cryogenic cooling is effective in enhancing supporting function of Al matrix to the SiC particles and improving surface quality. Additionally, the brittle fracture of SiC particles was suppressed and some ductile streaks on SiC particle could be observed.