Based on the analysis of elliptic curve digital signature algorithm(ECDSA),aiming at multilevel proxy signature in which the original signer delegates the digital signature authority to several proxies and its secur...Based on the analysis of elliptic curve digital signature algorithm(ECDSA),aiming at multilevel proxy signature in which the original signer delegates the digital signature authority to several proxies and its security demands, a new multilevel proxy signature scheme based on elliptic curve discrete logarithm problem (ECDLP) is presented and its security are proved.展开更多
Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy sign...Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy signature scheme based on elliptic curve cryptosystem. Contrast with universal proxy signature schemes, they are secure against key substitute attack even if there is not a certificate authority in the system, and also secure against the original signer's forgery attack. Furtherlnore, based on the elliptic curve cryptosystem, they are more efficient and have smaller key size than other system. They can be used in electronics transaction and mobile agent environment.展开更多
This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (prim...This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.展开更多
In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in perf...In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in performance, the ECC has been generally regarded aspositive; and the security caused by the Elliptic Curve Discrete Logarithm Problem (ECDLP) is highlyalso taken highly important. The main characteristic of the proposed scheme is that the length ofthe multi-signature is fixed rather than changeable and it will not increase with the number ofgroup members.展开更多
A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic...A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.展开更多
Quadratic-field cryptosystem is a cryptosystem built from discrete logarithm problem in ideal class groups of quadratic fields(CL-DLP). The problem on digital signature scheme based on ideal class groups of quadratic ...Quadratic-field cryptosystem is a cryptosystem built from discrete logarithm problem in ideal class groups of quadratic fields(CL-DLP). The problem on digital signature scheme based on ideal class groups of quadratic fields remained open, because of the difficulty of computing class numbers of quadratic fields. In this paper, according to our researches on quadratic fields, we construct the first digital signature scheme in ideal class groups of quadratic fields, using q as modulus, which denotes the prime divisors of ideal class numbers of quadratic fields. Security of the new signature scheme is based fully on CL-DLP. This paper also investigates realization of the scheme, and proposes the concrete technique. In addition, the technique introduced in the paper can be utilized to realize signature schemes of other kinds.展开更多
基金Supported by the National Natural Science Foun-dation of China (70471031)
文摘Based on the analysis of elliptic curve digital signature algorithm(ECDSA),aiming at multilevel proxy signature in which the original signer delegates the digital signature authority to several proxies and its security demands, a new multilevel proxy signature scheme based on elliptic curve discrete logarithm problem (ECDLP) is presented and its security are proved.
文摘Proxy signature is a special digital signature which enables a proxy signer to sign messages on behalf of the original signer. This paper proposes a strongly secure proxy signature scheme and a secure multi-proxy signature scheme based on elliptic curve cryptosystem. Contrast with universal proxy signature schemes, they are secure against key substitute attack even if there is not a certificate authority in the system, and also secure against the original signer's forgery attack. Furtherlnore, based on the elliptic curve cryptosystem, they are more efficient and have smaller key size than other system. They can be used in electronics transaction and mobile agent environment.
文摘This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.
文摘In the study, the digital multi-signature scheme, constructed by theintegration of one-way hash function and identification scheme, are proposed based on the ellipticcurve cryptosystem (ECC). To the efficiency in performance, the ECC has been generally regarded aspositive; and the security caused by the Elliptic Curve Discrete Logarithm Problem (ECDLP) is highlyalso taken highly important. The main characteristic of the proposed scheme is that the length ofthe multi-signature is fixed rather than changeable and it will not increase with the number ofgroup members.
基金supported by the National Natural Science Foundation of China (60763009)the Science and Technology Key Project of the Ministry of Education of China (207089)Zhejiang Natural Science Foundation of Outstanding Youth Team Project (R1090138)
文摘A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.
文摘Quadratic-field cryptosystem is a cryptosystem built from discrete logarithm problem in ideal class groups of quadratic fields(CL-DLP). The problem on digital signature scheme based on ideal class groups of quadratic fields remained open, because of the difficulty of computing class numbers of quadratic fields. In this paper, according to our researches on quadratic fields, we construct the first digital signature scheme in ideal class groups of quadratic fields, using q as modulus, which denotes the prime divisors of ideal class numbers of quadratic fields. Security of the new signature scheme is based fully on CL-DLP. This paper also investigates realization of the scheme, and proposes the concrete technique. In addition, the technique introduced in the paper can be utilized to realize signature schemes of other kinds.