We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are succ...We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.展开更多
Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate ...Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate of crystallites, the physical properties of the polycrystal vary with n. The direction-dependent functions (DDF) for crystals and polycrystals are introduced to describe the variations of the physical properties in direction n. Until now there are few papers dealing systematically with relations between the DDF and the crystalline orientation distribution. Herein we give general expressions of the DDF for crystals and polycrystals. We discuss the applications of the DDF in describing the physical properties of crystals and polycrystals.展开更多
Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at r...Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at room temperature of the both detectors were investigated.It is found that the dark resistivity of the detectors are respectively 3×10^(10)Ω·cm for bias electric field parallel to crystal c-axis(E//c) and 2×10~8Ω·cm for perpendicular to crystal c-axis(E⊥c).The energy spectrum response measurement shows that both detectors were sensitive to ^(241) Am 59.5 keVγ-rays,and achieved a good energy resolution of 16.8%for the E⊥c-axis configuration detector with a full width at half maximum of 9.996 keV.展开更多
Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes...Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport(PVT), at temperatures exceeding 1500 ?C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921303,2011CBA00100 and 2012CB821404the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB07020100and XDB07020200the National Natural Science Foundation of China under Grant No 11174350
文摘We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.
基金supported by the National Natural Science Foundation of China (10562004, 10662004)the Jiangxi Project to Nurture Academic and Technical Leaders in Targeted Areas+1 种基金the Research Fund for the Docotoral Program of Higher Education (20070403003)the Natural Science Foundation of Jiangxi of China (2008GZW0005).
文摘Some physical properties of crystals differ in direction n because crystal lattices are often anisotropic. A polycrystal is an aggregate of numerous tiny crystallites. Unless the polycrystal is an isotropic aggregate of crystallites, the physical properties of the polycrystal vary with n. The direction-dependent functions (DDF) for crystals and polycrystals are introduced to describe the variations of the physical properties in direction n. Until now there are few papers dealing systematically with relations between the DDF and the crystalline orientation distribution. Herein we give general expressions of the DDF for crystals and polycrystals. We discuss the applications of the DDF in describing the physical properties of crystals and polycrystals.
基金Project supported by the National Natural Science Foundation of China(No.50902012)the Natural Science Foundation of Sichuan Province,China(No.2009JY0087)
文摘Lead iodide single crystal was grown by physical vapor transport method.Two radiation detectors with different configurations were fabricated from the as-grown crystal.The electrical and y-ray response properties at room temperature of the both detectors were investigated.It is found that the dark resistivity of the detectors are respectively 3×10^(10)Ω·cm for bias electric field parallel to crystal c-axis(E//c) and 2×10~8Ω·cm for perpendicular to crystal c-axis(E⊥c).The energy spectrum response measurement shows that both detectors were sensitive to ^(241) Am 59.5 keVγ-rays,and achieved a good energy resolution of 16.8%for the E⊥c-axis configuration detector with a full width at half maximum of 9.996 keV.
基金Project supported by the Special Scientific Research Plan Project of Shaanxi Provincial Education Department,China(No.08JK376)
文摘Zinc oxide(ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes(LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport(PVT), at temperatures exceeding 1500 ?C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.