期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-temperature annealing of(201)β-Ga_(2)O_(3) substrates for reducing structural defects after diamond sawing
1
作者 Pavel Butenko Michael Boiko +5 位作者 Mikhail Sharkov Aleksei Almaev Aleksnder Kitsay Vladimir Krymov Anton Zarichny Vladimir Nikolaev 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期125-132,共8页
A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffract... A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffraction and a selective wet etching technique.The density of defects was estimated from the average value of etch pits calculated,including near-edge regions,and was obtained close to 109 cm^(-2).Blocks with lattice orientation deviated by angles of 1-3 arcmin,as well as non-stoichiometric fractions with a relative strain about(1.0-1.5)×10^(-4)in the[201]direction,were found.Crystal perfection was shown to decrease significantly towards the cutting lines of the samples.To reduce the number of structural defects and increase the crystal perfection of the samples via increasing defect motion mobility,the thermal annealing was employed.Polygonization and formation of a mosaic structure coupled with dislocation wall appearance upon 3 h of annealing at 1100℃ was observed.The fractions characterized by non-stoichiometry phases and the block deviation disappeared.The annealing for 11 h improved the homogeneity and perfection in the crystals.The average density of the etch pits dropped down significantly to 8×10^(6) cm^(-2). 展开更多
关键词 gallium oxide epi-ready substrate etch pits crystal defect mosaic structure crystal perfection
下载PDF
Intrinsic Strength Asymmetry Between Tension and Compression of Perfect Face-Centered-Cubic Crystals
2
作者 R.F.Wang J.Xu +2 位作者 R.T.Qu Z.Q.Liu Z.F.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第8期755-762,共8页
The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al... The strength asymmetry between tension and compression is a typical case of mechanical response of materials.Here we achieve the intrinsic strength asymmetry of six face-centered-cubic perfect crystals(Cu,Au,Ni,Pt,Al and Ir)through calculating the ideal tensile and compressive strength with considering the normal stress effect and the competition between different crystallographic planes.The results show that both the intrinsic factors(the ideal shear strength and cleavage strength of low-index planes)and the orientation could affect the strength asymmetry,which may provide insights into understanding the strength of ultra-strong materials. 展开更多
关键词 Perfect crystal Strength asymmetry Tension Compression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部