期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-Quality Bi_2Te_3 Single Crystalline Films on Flexible Substrates and Bendable Photodetectors
1
作者 刘雨从 陈嘉栋 +3 位作者 邓惠勇 胡古今 陈效双 戴宁 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期136-140,共5页
Recently, great efforts have been made in the fabrication of arbitrary warped devices to satisfy the requirement of wearable and lightweight electronic products. Direct growth of high crystalline quality films on flex... Recently, great efforts have been made in the fabrication of arbitrary warped devices to satisfy the requirement of wearable and lightweight electronic products. Direct growth of high crystalline quality films on flexible substrates is the most desirable method to fabricate flexible devices owing to the advantage of simple and compatible preparation technology with current semiconductor devices, while it is a very challenging work, and usually amorphous, polycrystalline or discontinuous single crystalline films are achieved. Here we demonstrate the direct growth of high-quality Bi2 Te3 single crystalline films on flexible polyimide substrates by the modified hot wall epitaxy technique. Experimental results reveal that adjacent crystallites are coherently coalesced to form a continuous film, although amounts of disoriented crystallites are generated due to fast growth rate. By inserting a quartz filter into the growth tube, the number density of disoriented crystallites is effectively reduced owing to the improved spiral interaction. Furthermore, flexible Bi2 Te3 photoconductors are fabricated and exhibit strong near-infrared photoconductive response under different degrees of bending, which also confirms the obtained fexible films suitable for electronic applications. 展开更多
关键词 of Te is High-Quality Bi2Te3 Single crystalline Films on Flexible substrates and Bendable Photodetectors that in BI for on flexible
下载PDF
Study on the influence of standoff distance on substrate damage under an abrasive water jet process by molecular dynamics simulation 被引量:2
2
作者 Ruling CHEN Di ZHANG Yihua WU 《Friction》 SCIE CSCD 2018年第2期195-207,共13页
The process of a cluster-containing water jet impinging on a monocrystalline silicon substrate was studied by molecular dynamics simulation. The results show that as the standoff distance increases, the jet will gradu... The process of a cluster-containing water jet impinging on a monocrystalline silicon substrate was studied by molecular dynamics simulation. The results show that as the standoff distance increases, the jet will gradually diverge. As a result, the solidified water film between the cluster and the substrate becomes "thicker" and "looser". The "thicker" and "looser" water film will then consume more input energy to achieve complete solidification, resulting in the stress region and the high-pressure region of the silicon substrate under small standoff distances to be significantly larger than those under large standoff distances. Therefore, the degree of damage sustained by the substrate will first experience a small change and then decrease quickly as the standoff distance increases. In summary, the occurrence and maintenance of complete solidification of the confined water film between the cluster and the substrate plays a decisive role in the level of damage formation on the silicon substrate. These findings are helpful for exploring the mechanism of an abrasive water jet. 展开更多
关键词 standoff distance crystalline silicon substrate abrasive water jet molecular dynamics simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部