Reliable information about soil conservation capacities of different natural ecosystems is an important reference for the design of targeted erosion and sediment control strategies. The objective of this paper is to q...Reliable information about soil conservation capacities of different natural ecosystems is an important reference for the design of targeted erosion and sediment control strategies. The objective of this paper is to quantify the soil conservation capacities of different natural ecosystems that can represent dif-ferent climatic zones. The 137Cs technique has been used to estimate soil redistribution rates in differ-ent natural ecosystems over the past 40 years in Wolong Nature Reserve. The reserve, transiting from the Chengdu plain to the Qinghai-Tibet plateau, maintains rich ecosystems from subtropical to frigid. The net soil erosion rates of 5 selected ecosystems that represent a warm coniferous-broadleaf-mixed forest, a cold-resistant deciduous taiga forest, a cold-resistant shrub, an evergreen cold-resistant taiga forest, and an alpine meadow are 0.17, 0.16, 0.13, 0.11 and 0.06 kg·m-2·a-1, respectively. Their soil con-servation capacities are reversed in order. The reference inventories for ^(137)Cs in different ecosystems range from 1658 to 3707 Bq·m-2 with the altitude. Results of this study indicate that any attempt to de-velop effective erosion and sediment strategies in areas with similar climates should consider natural ecosystem types.展开更多
Some alternative methods for estimating soil erosion rates rapidly were used to elucidate the relationship between the land use types and land degradation. The 137 Cs content, magnetic susceptibility, aggrega...Some alternative methods for estimating soil erosion rates rapidly were used to elucidate the relationship between the land use types and land degradation. The 137 Cs content, magnetic susceptibility, aggregate stability, and soil properties were studied in the Dongxi River Basin, a mountainous area of western Fujian. A plot of 137 Cs inventory (Y) against slope angle (X) shows a strong inverse log log relationship ( r = -0.83 ), indicating that much more soil erosion occurs on steeper slopes. Average soil loss (in thickness of top soil per year) in the past 30 years for arable slope crest, arable slopes and tea plantation slopes are 1.6 , 10.4 and 8.0 mm year -1 respectively. The surface layer enrichment factor of magnetic susceptibility (Y) in soil also shows an inverse log log relationship ( r =-0.63), indicating a similar tendency with the relationship between the 137 Cs inventory (Y) against slope angle (X). The physical and chemical properties of soils among different land use types show different degraded characteristics at different significant levels.展开更多
Deforestation to reclaim land often triggers severe soil erosion in the Guizhou Karst Plateau. 137Cs dating of the deposited sediments in the karst depression bottom was used to estimate soil losses by surface erosion...Deforestation to reclaim land often triggers severe soil erosion in the Guizhou Karst Plateau. 137Cs dating of the deposited sediments in the karst depression bottom was used to estimate soil losses by surface erosion since deforestation started in 1979 on hillslopes in the Shirenzhai catchment, Puding County, Guizhou Province. The catchment has a drainage area of 0.054 km2. The average 137Cs contents of the top and peak layers in five cores of the depression bottom (with an area of 2652 m2), collected in 2009, were 2.35 and 7.25 Bq kg-1, respectively. The medium depths in the depression (which ranged between 84 cm and 113.5 cm with a mean value of 92.1 cm) showed the presence of sediments deposited in 1979. The total volume and weight of the deposited sediments since 1979 were estimated to be 1965 m3 and 2496 t, respectively. The depression bottom can be treated as a temporary impoundment and its sediment trapping efficiency was estimated to be 0.7. The relevant average soil erosion rate on the hillslopes was 2315 t km-2 yr-1 since 1979. The mean 137Cs inventory of the five cores was 7693 Bq m-2, which was ~10 times the local reference inventory of 782 Bq m-2. The total 137Cs activity of the sediments in the bottom was 20.4×106 Bq, and the relevant 137Cs inventory loss from the hillslopes was 358 Bq m-2 (since 1954), which accounted for 45.8% of the reference inventory. As soil erosion was not severe before and after the period of deforestation and following cultivation in 1979-1990, the erosion rates on the hillslopes could potentially reach 7000 t km-2 yr-1.展开更多
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the prof...According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.展开更多
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and eros...Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 40321101)
文摘Reliable information about soil conservation capacities of different natural ecosystems is an important reference for the design of targeted erosion and sediment control strategies. The objective of this paper is to quantify the soil conservation capacities of different natural ecosystems that can represent dif-ferent climatic zones. The 137Cs technique has been used to estimate soil redistribution rates in differ-ent natural ecosystems over the past 40 years in Wolong Nature Reserve. The reserve, transiting from the Chengdu plain to the Qinghai-Tibet plateau, maintains rich ecosystems from subtropical to frigid. The net soil erosion rates of 5 selected ecosystems that represent a warm coniferous-broadleaf-mixed forest, a cold-resistant deciduous taiga forest, a cold-resistant shrub, an evergreen cold-resistant taiga forest, and an alpine meadow are 0.17, 0.16, 0.13, 0.11 and 0.06 kg·m-2·a-1, respectively. Their soil con-servation capacities are reversed in order. The reference inventories for ^(137)Cs in different ecosystems range from 1658 to 3707 Bq·m-2 with the altitude. Results of this study indicate that any attempt to de-velop effective erosion and sediment strategies in areas with similar climates should consider natural ecosystem types.
文摘Some alternative methods for estimating soil erosion rates rapidly were used to elucidate the relationship between the land use types and land degradation. The 137 Cs content, magnetic susceptibility, aggregate stability, and soil properties were studied in the Dongxi River Basin, a mountainous area of western Fujian. A plot of 137 Cs inventory (Y) against slope angle (X) shows a strong inverse log log relationship ( r = -0.83 ), indicating that much more soil erosion occurs on steeper slopes. Average soil loss (in thickness of top soil per year) in the past 30 years for arable slope crest, arable slopes and tea plantation slopes are 1.6 , 10.4 and 8.0 mm year -1 respectively. The surface layer enrichment factor of magnetic susceptibility (Y) in soil also shows an inverse log log relationship ( r =-0.63), indicating a similar tendency with the relationship between the 137 Cs inventory (Y) against slope angle (X). The physical and chemical properties of soils among different land use types show different degraded characteristics at different significant levels.
基金supported by National Basic Research Program of China (Grant No. 2006CB403200)National Natural Science Foundation of China (Grant No. 41001162)+3 种基金Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-306)National Key Technology R&D Program (Grant Nos. 2006BAC01A09 and 2008BAD98B07)Provincial Governor Foundation of Guizhou (Grant No. 2010-95)Opening Fund of State Key Laboratory of Environmental Geochemistry (Grant No. SKLEG9008)
文摘Deforestation to reclaim land often triggers severe soil erosion in the Guizhou Karst Plateau. 137Cs dating of the deposited sediments in the karst depression bottom was used to estimate soil losses by surface erosion since deforestation started in 1979 on hillslopes in the Shirenzhai catchment, Puding County, Guizhou Province. The catchment has a drainage area of 0.054 km2. The average 137Cs contents of the top and peak layers in five cores of the depression bottom (with an area of 2652 m2), collected in 2009, were 2.35 and 7.25 Bq kg-1, respectively. The medium depths in the depression (which ranged between 84 cm and 113.5 cm with a mean value of 92.1 cm) showed the presence of sediments deposited in 1979. The total volume and weight of the deposited sediments since 1979 were estimated to be 1965 m3 and 2496 t, respectively. The depression bottom can be treated as a temporary impoundment and its sediment trapping efficiency was estimated to be 0.7. The relevant average soil erosion rate on the hillslopes was 2315 t km-2 yr-1 since 1979. The mean 137Cs inventory of the five cores was 7693 Bq m-2, which was ~10 times the local reference inventory of 782 Bq m-2. The total 137Cs activity of the sediments in the bottom was 20.4×106 Bq, and the relevant 137Cs inventory loss from the hillslopes was 358 Bq m-2 (since 1954), which accounted for 45.8% of the reference inventory. As soil erosion was not severe before and after the period of deforestation and following cultivation in 1979-1990, the erosion rates on the hillslopes could potentially reach 7000 t km-2 yr-1.
基金Supported by CAS(Grant No.KZCX3-SW 422)NNSF(Grant Nos.90502002,40271015)+1 种基金ISWC(B105101-109)IAEA(12322/RO)
文摘According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.
基金the financial support for this study provided by the National Natural Science Foundation of China (No. 41001157)the 135 Strategic Program of the Institute of Mountain Hazards and the Environment,Chinese Academy of Sciences (No.SDS-135-1206)the Young Teacher Foundation of Henan Polytechnic University, China
文摘Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 1376s technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.