A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To pr...A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by γ-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard γ and α sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV γ-rays and excellent α-γ identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.展开更多
Three pulse-shape-discrimination (PSD) methods are applied to study the particle identification (PID) by using CsI(Tl) crystal, especially for identifying light charged particles. The zero-cross time method, fast and ...Three pulse-shape-discrimination (PSD) methods are applied to study the particle identification (PID) by using CsI(Tl) crystal, especially for identifying light charged particles. The zero-cross time method, fast and total component method and signal rise time method are used. The experiment, data analysis and results are compared. Good PID for p, α and γ can be achieved with a CsI(Tl)-photomultiplier assembly.展开更多
Depend on the good performance, the CsI crystal developed by the Crystal Detector Group has a good reputation in the international market. So far, In addition to meeting the needs of the external target experimental t...Depend on the good performance, the CsI crystal developed by the Crystal Detector Group has a good reputation in the international market. So far, In addition to meeting the needs of the external target experimental terminal in the CSR, pieces of CsI(Tl) crystals have been sold to some international and domestic research institutes, colleges and universities. They have been used for kinds of experiments in some well-known labs in German, America and Japan, and so on.展开更多
We investigated the cathode luminescence characteristics of CsI(Na)and CsI(Tl)crystals by the spectrum and structure properties at room temperature.We fabricated three different sizes of CsI(Na)and CsI(Tl)crystals and...We investigated the cathode luminescence characteristics of CsI(Na)and CsI(Tl)crystals by the spectrum and structure properties at room temperature.We fabricated three different sizes of CsI(Na)and CsI(Tl)crystals and measured their luminescence spectra under cathode rays.We found that CsI(Na)cathode luminescence peaks appear at 420 and 305 nm,and CsI(Tl)cathode luminescence peaks are 540 and 410 nm,the grain size affects CsI(Na)luminescence significantly,and the Na-related420 nm luminescence intensified relatively when the average grain size reaches^20μm,which becomes weak when the grain size is down to nano-scale.But the cathode luminescence spectra of CsI(Tl)crystals with different size have no obvious changes.Our explanations for these phenomena are that the different impurities in the same host material CsI lead to different luminescence mechanisms.These cathode luminescence characteristics indicate the suitability of CsI(Na)and CsI(Tl)crystals to match photomultiplier tube for large area crystal detector development.展开更多
基金supported by the Open Research Project of CAS Large Research InfrastructuresCAS Key Technology Talent ProgramNational Natural Science Foundations of China (Nos.U2031206 and 12273086)
文摘A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by γ-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard γ and α sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV γ-rays and excellent α-γ identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.
文摘Three pulse-shape-discrimination (PSD) methods are applied to study the particle identification (PID) by using CsI(Tl) crystal, especially for identifying light charged particles. The zero-cross time method, fast and total component method and signal rise time method are used. The experiment, data analysis and results are compared. Good PID for p, α and γ can be achieved with a CsI(Tl)-photomultiplier assembly.
文摘Depend on the good performance, the CsI crystal developed by the Crystal Detector Group has a good reputation in the international market. So far, In addition to meeting the needs of the external target experimental terminal in the CSR, pieces of CsI(Tl) crystals have been sold to some international and domestic research institutes, colleges and universities. They have been used for kinds of experiments in some well-known labs in German, America and Japan, and so on.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.11QG14)
文摘We investigated the cathode luminescence characteristics of CsI(Na)and CsI(Tl)crystals by the spectrum and structure properties at room temperature.We fabricated three different sizes of CsI(Na)and CsI(Tl)crystals and measured their luminescence spectra under cathode rays.We found that CsI(Na)cathode luminescence peaks appear at 420 and 305 nm,and CsI(Tl)cathode luminescence peaks are 540 and 410 nm,the grain size affects CsI(Na)luminescence significantly,and the Na-related420 nm luminescence intensified relatively when the average grain size reaches^20μm,which becomes weak when the grain size is down to nano-scale.But the cathode luminescence spectra of CsI(Tl)crystals with different size have no obvious changes.Our explanations for these phenomena are that the different impurities in the same host material CsI lead to different luminescence mechanisms.These cathode luminescence characteristics indicate the suitability of CsI(Na)and CsI(Tl)crystals to match photomultiplier tube for large area crystal detector development.