In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_...In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.展开更多
Currently,lead halide perovskite quantum dots(PeQDs)have attracted great attention due to their spectacular photophysical properties.However,the toxicity of Pb2+heavy metal ions in CsPbX3 PeQDs limits their practical ...Currently,lead halide perovskite quantum dots(PeQDs)have attracted great attention due to their spectacular photophysical properties.However,the toxicity of Pb2+heavy metal ions in CsPbX3 PeQDs limits their practical applications.Herein,a facile post-treatment doping method is proposed,which enables the preparation of highly luminescent low-toxic CsPbX3:Mn^2+PeQDs from nonluminescent Cs4PbX6 PeQDs at water interface.The monodispersed CsPbX3:Mn^2+PeQDs exhibit excellent photophysical properties,including high photoluminescence quantum yield up to 87%.The reaction process and doping mechanism are deeply explored through in-situ monitoring.By simply adjusting the halide composition of the original Cs4PbX6 PeQDs or Mn doping concentration,a series of CsPbX3:Mn^2+PeQDs with adjustable emission could be obtained.Further,the CsPbX3:Mn^2+Q-LED was fabricated and exhibited excellent orange light with the color coordinates of(0.564,0.399),correlated color temperature(CCT)of 1,918 K,and luminous efficiency(LE)of 24 lm/W,which illustrate the great promise in light emitting diode(LED)applications.This work not only provides a facile method for the preparation of highly luminescent low-toxic CsPbX3:Mn^2+PeQDs,but also provides insights into the mechanism of doping process.展开更多
基金Project supported by the National Natural Science Foundation of China(51872207,51672192)。
文摘In this work,Eu^(3+)-doped CsPbCl_(2)Br_(1) in borosilicate glass was successfully synthesized by the melt quenching annealing technique and crystallization method.This work reports a novel Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite quantum dots(QDs)glass with high sensitivity for optical temperature sensing.The relation of fluorescence intensity ratio(FIR)with the temperature was studied in the temperature range of 80-440 K.Notably,the maximum absolute temperature sensitivity(Sa)and relative temperature sensitivity(Sr)of Eu^(3+)-doped CsPbCl_(2)Br_(1) perovskite QDs glass can reach as high as 0.0315 K-1 and3.097%/K,respectively.Meanwhile,Eu^(3+)-doped CsPbCl_(2)Br_(1) QDs glass demonstrates good water resistance,excellent thermal and cold cycling stability performance,The Eu^(3+)-doped QDs glass materials can bring inspiration to the future exploration of rare earth ion-doped QDs glass material on the application of optical temperature sensing in the future.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(No.U1905213).
文摘Currently,lead halide perovskite quantum dots(PeQDs)have attracted great attention due to their spectacular photophysical properties.However,the toxicity of Pb2+heavy metal ions in CsPbX3 PeQDs limits their practical applications.Herein,a facile post-treatment doping method is proposed,which enables the preparation of highly luminescent low-toxic CsPbX3:Mn^2+PeQDs from nonluminescent Cs4PbX6 PeQDs at water interface.The monodispersed CsPbX3:Mn^2+PeQDs exhibit excellent photophysical properties,including high photoluminescence quantum yield up to 87%.The reaction process and doping mechanism are deeply explored through in-situ monitoring.By simply adjusting the halide composition of the original Cs4PbX6 PeQDs or Mn doping concentration,a series of CsPbX3:Mn^2+PeQDs with adjustable emission could be obtained.Further,the CsPbX3:Mn^2+Q-LED was fabricated and exhibited excellent orange light with the color coordinates of(0.564,0.399),correlated color temperature(CCT)of 1,918 K,and luminous efficiency(LE)of 24 lm/W,which illustrate the great promise in light emitting diode(LED)applications.This work not only provides a facile method for the preparation of highly luminescent low-toxic CsPbX3:Mn^2+PeQDs,but also provides insights into the mechanism of doping process.