基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结Cs...基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结CsPbI_(2)Br C-PSCs的2种制备工艺。首先,通过对反溶剂材料的种类及用量、钙钛矿前驱体溶液浓度等参数的优化,在反溶剂为800μL、钙钛矿前驱体溶液浓度为1.2 mol/L的条件下,采用一步溶液法成功制备了光电转换效率为9.87%的CsPbI_(2)Br C-PSCs。其次,为摆脱一步溶液法对有毒反溶剂的依赖,引入低温预退火工艺,通过对预退火时间及温度、钙钛矿前驱体溶液浓度等参数的优化,在空气环境下,预退火温度为80℃、钙钛矿前驱体溶液浓度为1.6 mol/L且未使用反溶剂的条件下获得了10.52%的最佳光电转化效率,同时CsPbI_(2)Br钙钛矿的退火温度可降低至240℃,并且未封装的器件在空气环境下显示出了较好的稳定性。展开更多
文摘基于无机CsPbI_(2)Br的碳基无空穴传输层钙钛矿太阳能电池(carbon based hole transport material freeperovskite solar cells,C-PSCs)具有成本低、易制备和稳定性好等优点而受到广泛关注。研究了空气环境下制备高效稳定的平面异质结CsPbI_(2)Br C-PSCs的2种制备工艺。首先,通过对反溶剂材料的种类及用量、钙钛矿前驱体溶液浓度等参数的优化,在反溶剂为800μL、钙钛矿前驱体溶液浓度为1.2 mol/L的条件下,采用一步溶液法成功制备了光电转换效率为9.87%的CsPbI_(2)Br C-PSCs。其次,为摆脱一步溶液法对有毒反溶剂的依赖,引入低温预退火工艺,通过对预退火时间及温度、钙钛矿前驱体溶液浓度等参数的优化,在空气环境下,预退火温度为80℃、钙钛矿前驱体溶液浓度为1.6 mol/L且未使用反溶剂的条件下获得了10.52%的最佳光电转化效率,同时CsPbI_(2)Br钙钛矿的退火温度可降低至240℃,并且未封装的器件在空气环境下显示出了较好的稳定性。