无机CsPbX_(3)钙钛矿材料由于其优异的光电性能、较宽的可调带隙及简单的制备工艺而得到广泛关注。溶液制备无机CsPbX_(3)钙钛矿结晶速率过快,结晶质量不高,所获得的CsPbX_(3)薄膜体相和表面存在大量的缺陷,严重影响了CsPbX_(3)钙钛矿...无机CsPbX_(3)钙钛矿材料由于其优异的光电性能、较宽的可调带隙及简单的制备工艺而得到广泛关注。溶液制备无机CsPbX_(3)钙钛矿结晶速率过快,结晶质量不高,所获得的CsPbX_(3)薄膜体相和表面存在大量的缺陷,严重影响了CsPbX_(3)钙钛矿太阳电池(perovskite solar cells,PSCs)的效率和稳定性,因此需要调控CsPbX_(3)薄膜的结晶过程,钝化其缺陷,以便获得高质量的钙钛矿薄膜和高效、稳定的无机CsPbX_(3)PSCs。近年来,前驱体工程已被证明是获得高质量钙钛矿薄膜的有效策略。该文对无机CsPbX_(3)钙钛矿晶体结构、光电性能、制备方法及存在问题等方面进行概述,总结并讨论了基于前驱体工程制备高质量无机CsPbX_(3)钙钛矿薄膜的4种主要方法,包括组分优化、添加剂策略、中间相调控、异质结构筑。其中,组分优化能够有效调控结晶速率和结晶路径;添加剂策略实现对不同类型缺陷的钝化;中间相调控是获得优良的表面形貌和高结晶度钙钛矿薄膜的关键策略;异质结构筑是抑制不利非辐射复合,提高钙钛矿稳定性的有效策略。最后,对无机CsPbX_(3)PSCs研究的发展趋势进行了展望,在未来应该深入探索CsPbX_(3)钙钛矿薄膜结晶机理和缺陷钝化物理机制,以制备高质量钙钛矿薄膜,同时应致力于大面积器件和叠层电池的制备和开发,以实现更高的光电转换效率和商业化应用。展开更多
The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside gra...The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.展开更多
The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)gl...The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass was studied.La_(2)O_(3)and YF_(3)substitution for Y_(2)O_(3)decreases the melting temperature of studied glass from 1402 to 1346 and 1379℃,and the activation energy of viscous flow decreases from 340 to 250 and 265 kJ/mol.Meanwhile,ZnO substitution for Al_(2)O_(3)decreases the melting temperature to 1379℃while increases the activation energy of viscous flow to 542 kJ/mol,due to their different role in glass structure.Substitution ZnO for Al_(2)O_(3)refines and homogenizes the crystals size and lowers crystallinity because the nucleation and crystal growth are depressed by higher activation energy of crystallization and change of crystallization mechanism from bulk crystallization to surface crystallization.Replacement of Y_(2)O_(3)by La_(2)O_(3)and YF_(3)respectively also decreases the crystallinity of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass ceramic due to competitive and hindering effect on the rearranged atoms,structural units and groups required by precipitated two crystals.Besides,y-Y2Si2O7,precipitation of Y4.67(SiO4)3O,ZnAl_(2)O_(4),and Y3Si3O10F were observed respectively due to incorporation of La_(2)O_(3),ZnO,and YF_(3).展开更多
B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper ter...B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes.展开更多
Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in ...Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body,although certain black and silver pigments remain in the face and head.To date,however,the molecular mechanisms underlying this transparent phenotype remain largely unknown.To explore the genetic basis of this transparency,we constructed a chromosome-level haplotypic genome assembly for the glass catfish,encompassing 32 chromosomes and 23344 protein-coding genes,using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines.Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene,encoding tyrosinase-related protein 1,rendering it a nonfunctional pseudogene.Notably,a synteny comparison with over 30 other fish species identified the loss of the endothelin-3(edn3b)gene in the glass catfish genome.To investigate the role of edn3b,we generated edn3b^(−/−)mutant zebrafish,which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish.These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish.Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish.These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish,but also offer a valuable genetic resource for further research on pigmentation in various animal species.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
文摘无机CsPbX_(3)钙钛矿材料由于其优异的光电性能、较宽的可调带隙及简单的制备工艺而得到广泛关注。溶液制备无机CsPbX_(3)钙钛矿结晶速率过快,结晶质量不高,所获得的CsPbX_(3)薄膜体相和表面存在大量的缺陷,严重影响了CsPbX_(3)钙钛矿太阳电池(perovskite solar cells,PSCs)的效率和稳定性,因此需要调控CsPbX_(3)薄膜的结晶过程,钝化其缺陷,以便获得高质量的钙钛矿薄膜和高效、稳定的无机CsPbX_(3)PSCs。近年来,前驱体工程已被证明是获得高质量钙钛矿薄膜的有效策略。该文对无机CsPbX_(3)钙钛矿晶体结构、光电性能、制备方法及存在问题等方面进行概述,总结并讨论了基于前驱体工程制备高质量无机CsPbX_(3)钙钛矿薄膜的4种主要方法,包括组分优化、添加剂策略、中间相调控、异质结构筑。其中,组分优化能够有效调控结晶速率和结晶路径;添加剂策略实现对不同类型缺陷的钝化;中间相调控是获得优良的表面形貌和高结晶度钙钛矿薄膜的关键策略;异质结构筑是抑制不利非辐射复合,提高钙钛矿稳定性的有效策略。最后,对无机CsPbX_(3)PSCs研究的发展趋势进行了展望,在未来应该深入探索CsPbX_(3)钙钛矿薄膜结晶机理和缺陷钝化物理机制,以制备高质量钙钛矿薄膜,同时应致力于大面积器件和叠层电池的制备和开发,以实现更高的光电转换效率和商业化应用。
文摘The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.
基金the National Natural Science Foundation of China(No.51974168)the Science and Technology Major Project of Inner Mongolia Autonomous Region in China(Nos.2019ZD023 and 2021ZD0028)the State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2020-08)。
文摘The effect of substitution La_(2)O_(3)and YF_(3)as network modifiers respectively for Y_(2)O_(3),and ZnO as intermediate oxide for Al_(2)O_(3)on crystallization and viscous behavior of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass was studied.La_(2)O_(3)and YF_(3)substitution for Y_(2)O_(3)decreases the melting temperature of studied glass from 1402 to 1346 and 1379℃,and the activation energy of viscous flow decreases from 340 to 250 and 265 kJ/mol.Meanwhile,ZnO substitution for Al_(2)O_(3)decreases the melting temperature to 1379℃while increases the activation energy of viscous flow to 542 kJ/mol,due to their different role in glass structure.Substitution ZnO for Al_(2)O_(3)refines and homogenizes the crystals size and lowers crystallinity because the nucleation and crystal growth are depressed by higher activation energy of crystallization and change of crystallization mechanism from bulk crystallization to surface crystallization.Replacement of Y_(2)O_(3)by La_(2)O_(3)and YF_(3)respectively also decreases the crystallinity of Y_(2)O_(3)-Al_(2)O_(3)-SiO_(2)glass ceramic due to competitive and hindering effect on the rearranged atoms,structural units and groups required by precipitated two crystals.Besides,y-Y2Si2O7,precipitation of Y4.67(SiO4)3O,ZnAl_(2)O_(4),and Y3Si3O10F were observed respectively due to incorporation of La_(2)O_(3),ZnO,and YF_(3).
基金the National Natural Science Foundation of China(Nos.51372179,51772224)the Open Project Foundation of Guangdong Fenghua Advanced Technology(No.FHR-JS-202011024)。
文摘B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes.
基金supported by the National Key Research and Development Program of China(2022YFE0139700,2023YFE0205100)Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation,Ministry of Agriculture and Rural Affairs,Pearl River Fisheries Research Institute,Chinese Academy of Fishery Sciences(20220202)+3 种基金Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Team(2023KJ150)China-ASEAN Maritime Cooperation Fund(CAMC-2018F)National Freshwater Genetic Resource Center(FGRC18537)Guangdong Rural Revitalization Strategy Special Provincial Organization and Implementation Project Funds(2022-SBH-00-001)。
文摘Glass catfish(Kryptopterus vitreolus)are notable in the aquarium trade for their highly transparent body pattern.This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body,although certain black and silver pigments remain in the face and head.To date,however,the molecular mechanisms underlying this transparent phenotype remain largely unknown.To explore the genetic basis of this transparency,we constructed a chromosome-level haplotypic genome assembly for the glass catfish,encompassing 32 chromosomes and 23344 protein-coding genes,using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines.Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene,encoding tyrosinase-related protein 1,rendering it a nonfunctional pseudogene.Notably,a synteny comparison with over 30 other fish species identified the loss of the endothelin-3(edn3b)gene in the glass catfish genome.To investigate the role of edn3b,we generated edn3b^(−/−)mutant zebrafish,which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish.These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish.Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish.These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish,but also offer a valuable genetic resource for further research on pigmentation in various animal species.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.