期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Exact Rates of Convergence of Functional Limit Theorems for Csorgo-Revesz Increments of a Wiener Process 被引量:1
1
作者 Wen Sheng WANG Department of Mathematics. Zhejiang University, Hangzhou 310028, P. R. China Department of Mathematics. Hangzhou Teacher’s College. Hangzhou 310012. P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第4期727-736,共10页
Let {W(t): t≥0} be a standard Wiener process and S be the Strassen set of functions. We investigate the exact rates of convergence to zero (as T→∞) of the variables sup_(0≤≤T-a_T inf_(f∈S sup_(0≤r≤1 |Y_t, T(x)... Let {W(t): t≥0} be a standard Wiener process and S be the Strassen set of functions. We investigate the exact rates of convergence to zero (as T→∞) of the variables sup_(0≤≤T-a_T inf_(f∈S sup_(0≤r≤1 |Y_t, T(x)-f(x)] and inf_(0≤t≤T-a_T sup_(0≤x≤1|Y_(t.T)(x)-f(x)| for any given f∈S, where Y_(t.T)(x)=(W(t+xa_T)-W(t))(2a_T(logTa_T^(-1)+log logT))^(-1/2). We establish a relation between how small the increments are and the functional limit results of Csrg-Revesz increments for a Wiener process. Similar results for partial sums of i.i.d, random variables are also given. 展开更多
关键词 Wiener process csorgo-revesz increment Strassen's law of the iterated logarithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部