The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to contr...The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to control.Herein,we report a simple and effective ion-exchange approach to regulate the Cu distribution in the one-pot synthesized Cu-SSZ-13 that possesses sufficient initial Cu species and thus provides a“natural environment”for adjusting Cu distribution precisely.By using this proposed strategy,a series of Cu-SSZ-13x zeolites with different Cu contents and distributions were obtained.It is shown that the dealumination of the as-synthesized Cu-SSZ-13 during the ion-exchange generates abundant vacant sites in the double six-membered-rings of the SSZ-13 zeolite for relocating Cu2+species and thus allows the redistribution of the Cu species.The catalytic results showed that the ion-exchanged Cu-SSZ-13 zeolites exhibit quite different catalytic performance in NH3-SCR reaction but superior to the parent counterpart.The structure–activity relationship analysis indicates that the redistribution of Cu species rather than other factors(e.g.,crystallinity,chemical composition,and porous structure)is responsible for the improved NH3-SCR performance and SO_(2) and H_(2)O resistance.Our work offers an effective method to precisely adjust the Cu distribution in preparing the industrial SCR catalysts.展开更多
A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO d...A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ)and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.展开更多
基金supports from National Natural Science Foundation of China(Nos.22178059 and 91934301)Natural Science Foundation of Fujian Province,China(2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co.,Ltd.(ZHQZKJ-19-F-ZS-0076)Qingyuan Innovation Laboratory(No.00121002),and Fujian Hundred Talent Program.
文摘The nature and distribution of Cu species in Cu-SSZ-13 play a vital role in selective catalytic reduction of NO by NH3(NH3-SCR),but existing methods for adjusting the Cu distribution are complex and difficult to control.Herein,we report a simple and effective ion-exchange approach to regulate the Cu distribution in the one-pot synthesized Cu-SSZ-13 that possesses sufficient initial Cu species and thus provides a“natural environment”for adjusting Cu distribution precisely.By using this proposed strategy,a series of Cu-SSZ-13x zeolites with different Cu contents and distributions were obtained.It is shown that the dealumination of the as-synthesized Cu-SSZ-13 during the ion-exchange generates abundant vacant sites in the double six-membered-rings of the SSZ-13 zeolite for relocating Cu2+species and thus allows the redistribution of the Cu species.The catalytic results showed that the ion-exchanged Cu-SSZ-13 zeolites exhibit quite different catalytic performance in NH3-SCR reaction but superior to the parent counterpart.The structure–activity relationship analysis indicates that the redistribution of Cu species rather than other factors(e.g.,crystallinity,chemical composition,and porous structure)is responsible for the improved NH3-SCR performance and SO_(2) and H_(2)O resistance.Our work offers an effective method to precisely adjust the Cu distribution in preparing the industrial SCR catalysts.
文摘A large specific surface area perovskite-type mixed oxide PbTiO3 supported cupric oxide was synthesized as a catalyst for NO decomposition and characterized by techniques such as XPS, XRD, H2-TPR before and after NO decomposition reactions. The catalytic properties were tested with a fix-bed micro-reactor. The results showed that the PbTiO3 was inactive for the reactions, but 1wt % Cu/PbTiO3 catalyst gave fairly good activities for NO decomposition at temperature as low as 473 K. Copper species were found well-dispersed but weakly interacted with the support before NO decomposition, and the NO decomposition caused significant change in the environment of the copper species, which became Cu(Ⅰ)and most probably incorporated into surface crystal lattice of the nano-sized PbTiO3. In NO reaction, a large amount of oxygen atoms from the decomposition of NO penetrated into the nano-sized PbTiO3 support and caused small expansion of crystal lattice. The transport of oxygen between the copper species and the catalyst support may be helpful to speed up the kinetic regeneration of active metal sites from oxygen occupancy and resulted in good catalytic performance.