A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/Nb1Ce3 presented over 90%NO conversion in a wide temperature range of 200-400℃...A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/Nb1Ce3 presented over 90%NO conversion in a wide temperature range of 200-400℃and exhibited an excellent H_(2)O or/and SO_(2) resistance at 275℃.To understand the promotional mechanism of Cu modification,the correlation among the"activity-structure-property"were tried to establish systematically.Cu species highly dispersed on NbCe catalyst to serve as the active component.The strong interaction among Cu,Nb and Ce promoted the emergence of NbO4 and induced more Bronsted acid sites.And Cu modification obviously enhanced the redox behavior of the NbCe catalyst.Besides,EPR probed the Cu species exited in the form of monomeric and dimeric Cu^(2+),the isolated Cu^(2+)acted as catalytic active sites to promote the reaction:Cu^(2+)-NO_(3)^(-)+NO(g)→Cu^(2+)-NO_(2)^(-)+NO_(2)(g).Then the generated NO_(2) would accelerate the fast-SCR reaction process and thus facilitated the lowtemperature deNO_(x) efficiency.Moreover,surface nitrates became unstable and easy to decompose after Cu modification,thus providing additional adsorption and activation sites for NH3,and ensuring the improvement of catalytic activity at high temperature.Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu_(0.010)/Nb_(1)Ce_(3) catalyst,the excellent H_(2)O and SO_(2) resistance was as expected.展开更多
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f...The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.展开更多
In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g...In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g^(-1)and an average pore size of 3.75 nm with multi-level pore architecture.MN decreased TR's carbonization temperature and promoted the aromatics extent,pore structure for the frizzly flake-like biochar.Rhodamine B(RhB)was chosen as the adsorbate to explore the removal performance of organic dyes in this study.The results indicated that the maximum adsorption capacity of RhB on MN-TRB_(750) at 20℃ is up to 809.0 mg·g^(-1)with isotherms fitted well to Freundlich and Dubinin-Radushkevic models.The adsorption kinetics followed pseudo-second-order and Elovich models with an equilibrium adsorption capacity of 757.6 mg·g^(-1)as the initial concentration of RhB is 260 mg·L^(-1).High pore filling,hydrogen bond,π-πinteraction determined the adsorption of RhB onto MN-TRB850 through a multi-active center and exothermic chemical sorption process.展开更多
基金Financial support from the National Natural Science Foundation of China,China(Nos.21972062,21976081,21976111)。
文摘A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/Nb1Ce3 presented over 90%NO conversion in a wide temperature range of 200-400℃and exhibited an excellent H_(2)O or/and SO_(2) resistance at 275℃.To understand the promotional mechanism of Cu modification,the correlation among the"activity-structure-property"were tried to establish systematically.Cu species highly dispersed on NbCe catalyst to serve as the active component.The strong interaction among Cu,Nb and Ce promoted the emergence of NbO4 and induced more Bronsted acid sites.And Cu modification obviously enhanced the redox behavior of the NbCe catalyst.Besides,EPR probed the Cu species exited in the form of monomeric and dimeric Cu^(2+),the isolated Cu^(2+)acted as catalytic active sites to promote the reaction:Cu^(2+)-NO_(3)^(-)+NO(g)→Cu^(2+)-NO_(2)^(-)+NO_(2)(g).Then the generated NO_(2) would accelerate the fast-SCR reaction process and thus facilitated the lowtemperature deNO_(x) efficiency.Moreover,surface nitrates became unstable and easy to decompose after Cu modification,thus providing additional adsorption and activation sites for NH3,and ensuring the improvement of catalytic activity at high temperature.Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu_(0.010)/Nb_(1)Ce_(3) catalyst,the excellent H_(2)O and SO_(2) resistance was as expected.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20184,52250077,and 52272080)the Jilin Province Natural Science Foundation of China(No.20220201093GX)+2 种基金the Fundamental Research Funds for the Central Universitiessupported by the National Research Foundation of Korea(2018R1A3B1052702 to JSK)the Starting growth Technological R&D Program(TIPS Program,No.S3201803,2021,MW)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.
基金Supported by the Innovation and Entrepreneurship Plan Project of Shaanxi Province and Shaanxi Xueqian Normal University for College Students(S202314390048,2023DC048)。
文摘In this work,porous biochar(MN-TRB_(750))was fabricated via direct pyrolysis of tea residue(TR)and Mg(NO_(3))_(2)·6H_(2)O(MN).The as-synthesized MN-TRB_(750) reached a specific surface area of 839.54 m^(2)·g^(-1)and an average pore size of 3.75 nm with multi-level pore architecture.MN decreased TR's carbonization temperature and promoted the aromatics extent,pore structure for the frizzly flake-like biochar.Rhodamine B(RhB)was chosen as the adsorbate to explore the removal performance of organic dyes in this study.The results indicated that the maximum adsorption capacity of RhB on MN-TRB_(750) at 20℃ is up to 809.0 mg·g^(-1)with isotherms fitted well to Freundlich and Dubinin-Radushkevic models.The adsorption kinetics followed pseudo-second-order and Elovich models with an equilibrium adsorption capacity of 757.6 mg·g^(-1)as the initial concentration of RhB is 260 mg·L^(-1).High pore filling,hydrogen bond,π-πinteraction determined the adsorption of RhB onto MN-TRB850 through a multi-active center and exothermic chemical sorption process.