期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains
1
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 Al–zn–Mg–cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
2
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−zn−Mg−cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Behavior and influence of Pband Biin Ag-Cu-Zn brazing alloy 被引量:8
3
作者 薛松柏 钱乙余 +2 位作者 胡晓萍 赵振清 郝和铭 《China Welding》 EI CAS 2000年第1期44-49,共6页
The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag Cu Zn filler metal have been studied. The results show that Pb has little effect on both above pro... The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag Cu Zn filler metal have been studied. The results show that Pb has little effect on both above properties, and Bi has remarkable influence on the spreading property but little effect on the strength of brazed joint. Pb and Bi dissolve into the Ag Cu Zn matrix and will melt and gather at lower temperature when that alloy is being heated. Therefore a liquid forms on the surface of the Ag Cu Zn alloy and overlays the melting alloy, then keeps the filler metal away from the materials being joined, and so decreases the spreading property. 展开更多
关键词 Pb Bi Ag cu zn alloy spreading property STRENGTH
下载PDF
Effects of minor Sc and Zr additions on mechanical properties and microstructure evolution of Al−Zn−Mg−Cu alloys 被引量:31
4
作者 Quan-feng XIAO Ji-wu HUANG +3 位作者 Ying-ge JIANG Fu-qin JIANG Yun-feng WU Guo-fu XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1429-1438,共10页
The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron m... The effects of minor Sc and Zr additions on the mechanical properties and microstructure evolution of Al Zn Mg Cu alloys were studied using tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ultimate tensile strength of the peak-aged Al Zn Mg Cu alloy is improved by about 105 MPa with the addition of 0.10% Zr. An increase of about 133 MPa is observed with the joint addition of 0.07% Sc and 0.07% Zr. For the alloys modified with the minor addition of Sc and Zr (0.14%), the main strengthening mechanisms of minor addition of Sc and Zr are fine-grain strengthening, sub-structure strengthening and the Orowan strengthening mechanism produced by the Al3(Sc,Zr) and Al3Zr dispersoids. The volume of Al3Zr particles is less than that of Al3(Sc,Zr) particles, but the distribution of Al3(Sc,Zr) particles is more dispersed throughout the matrix leading to pinning the dislocations motion and restraining the recrystallization more effectively. 展开更多
关键词 Al zn Mg cu alloys Al3(Sc Zr) AL3ZR dislocation motion recrystallization strengthening mechanism
下载PDF
Effects of high-pressure heat treatment on the solid-state phase transformation and microstructures of Cu_(61.13)Zn_(33.94)Al_(4.93) alloys 被引量:7
5
作者 王海燕 刘建华 +1 位作者 彭桂荣 王文魁 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期469-474,共6页
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var... The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min. 展开更多
关键词 cu61.13zn33.94A14.93 alloy high-pressure heat treatment solid-state phase transformation MICROSTRUCTURES
下载PDF
Quench sensitivity and microstructures of high-Zn-content Al−Zn−Mg−Cu alloys with different Cu contents and Sc addition 被引量:23
6
作者 Ying-hao PENG Chong-yu LIU +2 位作者 Li-li WEI Hong-jie JIANG Zhen-jiang GE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期24-35,共12页
The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensi... The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensitivity of the 7xxx Al alloys were studied.The alloys with high Zn content and Sc addition exhibited higher hardness than the 7085 alloy at the position 3 mm away from the quenching end.The density ofηand T phases increased with the increase in Zn and Cu contents,and the Sc addition led to the formation of the Y phase and moreηphases at the position 120 mm away from the quenching end.Compared with the 7085 alloy,the high Zn−high Cu and Sc-added alloys exhibited higher quench sensitivity,while the simultaneous increase in Zn content and decrease in Cu content could enhance the hardness and reduce the quench sensitivity of the 7085 alloy. 展开更多
关键词 Al−zn−Mg−cu alloy quench sensitivity Al3(Sc Zr) Y phase grain boundary
下载PDF
Theoretical design and distribution control of precipitates and solute elements in Al−Zn−Mg−Cu alloys with heterostructure 被引量:7
7
作者 Liang-liang YUAN Ming-xing GUO +3 位作者 Yong YAN Wei-jun FENG Zan-yang LIU Lin-zhong ZHUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3328-3341,共14页
In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the he... In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the heterogeneous microstructure of Al−Zn−Mg−Cu alloys.The results show that the dissolution of precipitates is mainly affected by particle size and heat treatment temperature,the heterogeneous distribution level of solute elements diffused in the alloy matrix mainly depends on the grain size,while the heat treatment temperature only has an obvious effect on the concentration distribution in the larger grains,and the experimental results of Al−Zn−Mg−Cu alloy are in good agreement with the theoretical model predictions of precipitates and solute element concentration distribution.Controlling the concentration distribution of precipitates and solute elements in Al−Zn−Mg−Cu alloys is the premise of accurately constructing heterogeneous microstructure in micro-domains,which can be used to significantly improve the formability of Al−Zn−Mg−Cu alloys with a heterostructure. 展开更多
关键词 Al−zn−Mg−cu alloys concentration distribution diffusion heterogeneous microstructure model
下载PDF
Effect of non-isothermal aging on microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys 被引量:5
8
作者 Yao LI Guo-fu XU +3 位作者 Xiao-yan PENG Shi-chao LIU Ying DENG Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期2899-2908,共10页
The evolution of microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys during non-isothermal aging was studied.The mechanical properties of the alloy were tested by stretching at room temperature.The results... The evolution of microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys during non-isothermal aging was studied.The mechanical properties of the alloy were tested by stretching at room temperature.The results show that in the non-isothermal aging process,when the alloy is cooled to 140℃,the ultimate tensile strength of the alloy reaches a maximum value of 582 MPa and the elongation is 11.9%.The microstructure was tested through a transmission electron microscope,and the experimental results show that the GP zones andη'phases are the main strengthening precipitates.At the cooling stage,when the temperature dropped to 180℃,the GP zones were precipitated again.Besides,the experimental results show that the main strengthening phase during non-isothermal aging isη'phases. 展开更多
关键词 Al−zn−Mg−cu aluminum alloy non-isothermal aging η'phases mechanical properties
下载PDF
Tailoring phase fractions of T'and η' phases in dual-phase strengthened Al−Zn−Mg−Cu alloy via ageing treatment 被引量:2
9
作者 Yan ZOU Xiao-dong WU +2 位作者 Song-bai TANG Kai ZHAO Ling-fei CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第10期3182-3196,共15页
Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fr... Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 ℃.For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 ℃;whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 ℃. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates. 展开更多
关键词 Al−zn−Mg−cu alloy ageing behavior microstructure dual-phase strengthening
下载PDF
Microstructure and mechanical properties of squeeze-cast Al−5.0Mg−3.0Zn−1.0Cu alloys in solution-treated and aged conditions 被引量:2
10
作者 Tian-wen LIU Qu-dong WANG +5 位作者 Hua-ping TANG Zhong-yang LI Chuan LEI Mahmoud EBRAHIMI Hai-yan JIANG Wen-Jiang DING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2326-2338,共13页
The microstructure and mechanical properties at different depths of squeeze-cast,solution-treated and aged Al−5.0Mg−3.0Zn−1.0Cu alloy were investigated.For squeeze-cast alloy,from casting surface to interior,the grain... The microstructure and mechanical properties at different depths of squeeze-cast,solution-treated and aged Al−5.0Mg−3.0Zn−1.0Cu alloy were investigated.For squeeze-cast alloy,from casting surface to interior,the grain size ofα(Al)matrix and width of T-Mg32(AlZnCu)49 phase increase significantly,while the volume fraction of T phase decreases.The related mechanical properties including ultimate tensile strength(UTS)and elongation decrease from 243.7 MPa and 2.3%to 217.9 MPa and 1.4%,respectively.After solution treatment at 470℃ for 36 h,T phase is dissolved into matrix,and the grain size increases so that the UTS and elongation from surface to interior are respectively reduced from 387.8 MPa and 18.6%to 348.9 MPa and 13.9%.After further peak-aging at 120℃ for 24 h,numerous G.P.II zone andη′phase precipitate in matrix.Consequently,UTS values of the surface and interior increase to 449.5 and 421.4 MPa,while elongation values decrease to 12.5%and 8.1%,respectively. 展开更多
关键词 squeeze-cast Al−zn−Mg−cu alloys solution treatment aging MICROSTRUCTURES mechanical properties
下载PDF
Unraveling the catalytically active phase of carbon dioxide hydrogenation to methanol on Zn/Cu alloy: Single atom versus small cluster 被引量:1
11
作者 Xiao-Kuan Wu Hui-Min Yan +3 位作者 Wei Zhang Jie Zhang Guang-Jie Xia Yang-Gang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期582-593,I0015,共13页
Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What ... Methanol synthesis from CO_(2)hydrogenation catalyzed by Zn/Cu alloy has been widely studied,but there is still debate on its catalytic active phase and whether the Zn can be oxidized during the reaction process.What is more,as Zn atoms could locate on Zn/Cu alloy surface in forms of both single atom and cluster,how Zn surface distribution affects catalytic activity is still not clear.In this work,we performed a systematic theoretical study to compare the mechanistic natures and catalytic pathways between Zn single atom and small cluster on catalyst surface,where the surface oxidation was shown to play the critical role.Before surface oxidation,the Zn single atom/Cu is more active than the Zn small cluster/Cu,but its surface oxidation is difficult to take place.Instead,after the easy surface oxidation by CO_(2)decomposition,the oxidized Zn small cluster/Cu becomes much more active,which even exceeds the hardlyoxidized Zn single atom/Cu to become the active phase.Further analyses show this dramatic promotion of surface oxidation can be ascribed to the following factors:i)The O from surface oxidation could preferably occupy the strongest binding sites on the center of Zn cluster.That makes the O intermediates bind at the Zn/Cu interface,preventing their too tight binding for further hydrogenation;ii)The higher positive charge and work function on the oxidized surface could also promote the hydrogenation of O intermediates.This work provided one more example that under certain condition,the metal cluster can be more active than the single atom in heterogeneous catalysis. 展开更多
关键词 CO_(2)hydrogenation Surface oxidation zn/cu alloy Catalytically active phase
下载PDF
Refinement and strengthening mechanism of Mg−Zn−Cu−Zr−Ca alloy solidified under extremely high pressure 被引量:2
12
作者 Xiao-ping LIN Yang KUO +4 位作者 Lin WANG Jie YE Chong ZHANG Li WANG Kun-yu GUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1587-1598,共12页
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o... Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa. 展开更多
关键词 high pressure solidification Mg−zncu−Zr−Ca alloy Mg_(2)Ca particle solution strengthening grain refinement strengthening
下载PDF
Influence of Si Contents on the Microstructure Evolution and Mechanical Properties of Al-Mg-Si-Cu-Zn Alloys
13
作者 Liang Zhu Mingxing Guo +3 位作者 Jishan Zhang Gaojie Li Yu Wang Linzhong Zhuang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期10-18,共9页
The influence of different Si contents on the microstructure evolution and mechanical properties of Al⁃Mg⁃Si⁃Cu⁃Zn alloys was systematically studied using tensile testing,OM,SEM,EDS,and EBSD.The results indicate that ... The influence of different Si contents on the microstructure evolution and mechanical properties of Al⁃Mg⁃Si⁃Cu⁃Zn alloys was systematically studied using tensile testing,OM,SEM,EDS,and EBSD.The results indicate that the grain size of as⁃cast alloys was gradually reduced with the increase of the Si content,which mainly resulted from the formation of many iron⁃rich phases and precipitates during the casting process.During homogenization treatment,the plate⁃likeβ⁃AlFeSi phases in the alloy with a higher Si content easily transformed to the sphericalα⁃Al(FeMn)Si phases,which is helpful for improving the formability of alloys.The microstructure evolution of the alloys was also greatly dependent on the content of Si that the number density and homogeneous distribution level of precipitates in the final cold rolled alloys both increased with the increase of the Si content,which further provided a positive effect on the formation of fine recrystallization grains during the subsequent solution treatment.As a result,the yield strength,ultimate tensile strength,and elongation of the pre⁃aged alloys in the direction of 45°with respect to the rolling direction were all increased with increasing Si content. 展开更多
关键词 Al⁃Mg⁃Si⁃cuzn alloy Mg/Si ratio microstructure evolution mechanical properties
下载PDF
Fatigue strength and microstructure evaluation of Al 7050 alloy wires recycled by spray forming,extrusion and rotary swaging 被引量:6
14
作者 João G.J.de SALVO Conrado RMAFONSO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第12期3195-3209,共15页
Recycled high-strength aluminum alloys have limited use as structural materials due to poor mechanical properties. Spray forming remelting followed by hot extrusion is a promising route for reprocessing 7 xxx alloys. ... Recycled high-strength aluminum alloys have limited use as structural materials due to poor mechanical properties. Spray forming remelting followed by hot extrusion is a promising route for reprocessing 7 xxx alloys. The 7050 alloy machining chips were spray formed, hot extruded, rotary swaged and heat-treated in order to improve mechanical properties. Microstructures, tensile properties and fatigue strength results for a 2.7 mm-diameter recycled wire are presented. Secondary phases and precipitates were investigated by XRD, SEM, EBSD, TEM and DSC. As-swaged and heat-treated(solution and aging) conditions were evaluated. Mechanical properties of both conditions outperformed AA7050 aerospace specification. Substantial grain refinement resulted from the extensive plastic deformation imposed by rotary swaging. Refined micrometric and sub-micrometric Al grains, as well as coarse and fine intermetallic precipitates were observed. Subsequent solution treatment resulted in a homogeneous, recrystallized and equiaxed microstructure with grain size of 9 μm. Nanoscale GP(I) zones and η′ phase precipitates formed after aging at 120 ℃, imparting higher tensile(586 MPa) and fatigue(198 MPa) strengths. 展开更多
关键词 Al−zn−Mg−cu alloy spray forming thermomechanical processing MICROSTRUCTURE FATIGUE
下载PDF
Creep aging behavior of retrogression and re-aged 7150 aluminum alloy 被引量:7
15
作者 Qing WANG Li-hua ZHAN +5 位作者 Yong-qian XU Chun-hui LIU Xing ZHAO Ling-zhi XU You-liang YANG Yi-xian CAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2599-2612,共14页
Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transm... Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy. 展开更多
关键词 creep aging forming creep behavior mechanical properties electrical conductivity aging precipitates Al−zn−Mg−cu alloy
下载PDF
Synchronously Improving the Thermal Conductivity and Mechanical Properties of Al–Si–Fe–Mg–Cu–Zn Alloy Die Castings Through Ultrasonic-Assisted Rheoforming 被引量:2
16
作者 Mingfan Qi Yonglin Kang +4 位作者 Jingyuan Li Yuzhao Xu Jicheng Wang Gunan Li Aisen Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第10期1331-1344,共14页
An ultrasonic vibration-assisted air-cooled stirring rod process(ACSR+UV)was used to efficiently prepare a large-volume semisolid slurry with a mass of more than 40 kg.A low-cost Al–Si–Fe–Mg–Cu–Zn die-casted allo... An ultrasonic vibration-assisted air-cooled stirring rod process(ACSR+UV)was used to efficiently prepare a large-volume semisolid slurry with a mass of more than 40 kg.A low-cost Al–Si–Fe–Mg–Cu–Zn die-casted alloy with high thermal conductivity,high plasticity and medium strength was developed.The alloy was used to manufacture large,thin-walled parts for 5 G base stations by using the ACSR+UV rheological die-casting(ACSR+UV R-DC)process.Investigations were performed on the microstructure,porosity,mechanical properties,fracture behaviour and thermal conductivity of the ACSR+UV R-DC alloy,which was then compared to traditionally die-casted(T-DC)and ACSR R-DC alloys.The mechanisms for the microstructural refinement and enhancement of the mechanical and thermal conductivity performances of the ACSR+UV R-DC alloy were also analysed.The results showed that the ACSR+UV process increased the nucleation rate of the melt due to the increase in the nucleation area and the generation of cavitation bubbles.A radial-and an axial-forced convection was also generated inside the melt under the combined effects of acoustic flow and mechanical stirring,thereby homogenising the melt composition field and the temperature field.Therefore,the ACSR+UV R-DC process not only refined the primaryα-Al(α_(1)-Al),the eutectic silicon and the secondaryα-Al(α_(2)-Al),but also greatly improved the morphology and the distribution of the β-Al5FeSi phase.The mechanical properties of the ACSR+UV R-DC alloy were higher than those of the T-DC and the ACSR R-DC alloys.Compared to the T-DC alloy,the ultimate tensile strength,elongation and yield strength of the ACSR+UV R-DC alloy were increased by 34%,122%and 19%,respectively.This was because the ACSR+UV R-DC technique gave the alloy the characteristics of high density,fine sphericalα1-Al grain and a fine and uniform β-phase,which improved the fracture behaviour of the alloy.The thermal conductivity of the ACSR+UV R-DC alloy was 184 W/(m K),which was 10.2%and 3.4%higher than that of T-DC and ACSR R-DC alloys,respectively.This was because the refined eutectic silicon and β phases in the ACSR+UV R-DC alloy facilitated an easier electron flow through the eutectic region,and the decrease in porosity increased the effective area of heat conduction. 展开更多
关键词 Rheological die-casting Ultrasonic vibration Al–Si–Fe–Mg–cuzn alloy Mechanical properties Thermal conductivity
原文传递
Phases and microstructures of high Zn-containing Al–Zn–Mg–Cu alloys 被引量:5
17
作者 Jun-Tao Liu Yong-An Zhang +3 位作者 Xi-Wu Li Zhi-Hui Li Bai-Qing Xiong Ji-Shan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2016年第5期380-384,共5页
Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive... Phases and microstructures of three high Zncontaining Al–Zn–Mg–Cu alloys were investigated by means of thermodynamic calculation method, optica microscopy(OM), scanning electron microscopy(SEM)energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and differential scanning calorimetry(DSC) analysis. The results indicate that similar dendritic network morphologies are found in these three Al–Zn–Mg–Cu alloys. The as-cast 7056 aluminum alloy consists of aluminum solid solution, coarse Al/Mg(Cu, Zn, Al)2 eutectic phases, and fine intermetallic compounds g(MgZn2). Both of as-cast 7095 and 7136 aluminum alloys involve a(Al)eutectic Al/Mg(Cu, Zn, Al)2, intermetallic g(MgZn2), and h(Al2Cu). During homogenization at 450 ℃, fine g(MgZn2) can dissolve into matrix absolutely. After homogenization at 450 ℃ for 24 h, Mg(Cu, Zn, Al)2 phase in 7136 alloy transforms into S(Al2Cu Mg) while no change is found in 7056 and 7095 alloys. The thermodynamic calculation can be used to predict the phases in high Zncontaining Al–Zn–Mg–Cu alloys. 展开更多
关键词 Al–zn–Mg–cu alloy High zn Microstructure Homogenization
原文传递
Effects of Solution Treatment on the Microstructure,Tensile Properties,and Impact Toughness of an Al–5.0Mg–3.0Zn–1.0Cu Cast Alloy 被引量:2
18
作者 Hua-Ping Tang Qu-Dong Wang +6 位作者 Colin Luo Chuan Lei Tian-Wen Liu Zhong-Yang Li Kui Wang Hai-Yan Jiang Wen-Jiang Ding 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第1期98-110,共13页
This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permane... This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists ofα-Al dendrites and a network-like pattern of T-Mg32(AlZnCu)49 phases.Most of the T-phases were dissolved within 24 h at 470℃;and a further prolonging of solution time resulted in a rapid growth ofα-Al grains.No transformation from the T-phase to the S-Al2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT=8.43 EL-3.46.After optimal solution treatment at 470℃for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4%and 154.7 kJ/m^(2),which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness. 展开更多
关键词 Al–Mg–zncu cast alloys T-Mg32(Alzn)49 PHASE S-Al2cuMg phase Impact toughness MECHANICAL properties
原文传递
Solidification behavior and elimination of undissolved Al_(2)CuMg phase during homogenization in Ce-modified Al–Zn–Mg–Cu alloy 被引量:3
19
作者 Xin-Xiang Yu Jie Sun +4 位作者 Zhu-Tie Li Han Dai Hong-Jie Fang Jun-Feng Zhao Deng-Feng Yin 《Rare Metals》 SCIE EI CAS CSCD 2020年第11期1279-1287,共9页
The solidification behavior and intermetallic phase evolution during homogenization annealing of an Al-Zn-Mg-Cu alloy with 0.12 wt%Ce addition were examined.The residual Al_(2)CuMg phase is completely dissolved after ... The solidification behavior and intermetallic phase evolution during homogenization annealing of an Al-Zn-Mg-Cu alloy with 0.12 wt%Ce addition were examined.The residual Al_(2)CuMg phase is completely dissolved after homogenization and is replaced by a large number of dispersed micro/nanoscaled AlCuCe enrichment phases within Al matrix.This change occurs because of the formation of a large number of finer lamellar eutectic network structures which are more easily dissolved into Al matrix during the homogenization process.In addition,the trapping of Cu atoms in the stable AlCuCe phase also prevents the formation of Al_(2)CuMg phase,leading to the complete dissolution of Al_(2)CuMg phase in the Al-Zn-MgCu alloy.The grain refinement behavior in Al alloy with Ce addition is similar to that in alloys with the addition of Sc,because of the formation of primary Ce-enriched Al_(11)Ce_(3)phase as the nucleation agent ofα(Al)during solidification. 展开更多
关键词 Al–zn–Mg–cu alloy Al_(2)cuMg phase HOMOGENIZATION Grain refinement
原文传递
Distribution uniformity of added elements in twin-roll cast Al–Zn–Mg–Cu alloy by multi-electromagnetic fields 被引量:2
20
作者 Xin Su Guang-Ming Xu Ding-Hui Jiang 《Rare Metals》 SCIE EI CAS CSCD 2015年第8期546-552,共7页
The micromorphology and the concentration o massive precipitates produced by twin-roll casting(TRC processes without and with multi-electromagnetic fields fo Al–Zn–Mg–Cu alloy at 670 °C were investigated in de... The micromorphology and the concentration o massive precipitates produced by twin-roll casting(TRC processes without and with multi-electromagnetic fields fo Al–Zn–Mg–Cu alloy at 670 °C were investigated in detai by means of optical microscopy(OM) and electron probe micro analyzer(EPMA). The results clearly show tha under a 0.2 T static magnetic field, the macro-segregation bands are remarkably alleviated according to the order o uniform static magnetic field, half-wave oscillating elec tromagnetic field as well as alternating oscillating elec tromagnetic field, as compared with the non-field TRC process(B = 0). Moreover, under the alternating oscillat ing electromagnetic TRC process, almost all segregation bands disappear. Additionally, through the observation on a smaller scale, the netlike precipitates elongated and broken by electromagnetic force, and replaced by numerous bulk depositions. EPMA analysis shows that the added atoms are diffused from deposition to a(Al) matrix, resulting in that the solute concentration in and around the precipitates is tending toward uniformity and stability. 展开更多
关键词 Al–zn–Mg–cu alloy Electromagnetic field TWIN-ROLL
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部