期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Plasma Surface Cu Alloyed Layer as a Lubricant on Stainless Steel Sheet:Wear Characteristics and On-job Performance in Incremental Forming 被引量:1
1
作者 吴红艳 WEI Hongyu +3 位作者 Ghulam Hussain TAO Kemei Asif Iqbal 饶伟峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期422-428,共7页
To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicat... To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicated that the supersaturated copper dispersedly precipitated in grain interior and crystalboundaries and formed the vermicular structure.The tribologicaltests indicated that the friction coefficient of the Cu alloyed layer was lower than that of the stainless steels.The wear rate of stainless steelin the presence of Cu alloyed layer was approximately 2-fold lower than that in the absence of the alloyed layer.The results of the incrementalforming indicated that the ploughing phenomenon was not observed on the stainless steelin the presence of Cu alloyed layer during the incrementalforming,while the stainless steelpresented the deep ploughing.Therefore,Cu alloyed layer on stainless steelexhibited excellent self-lubrication and forming properties. 展开更多
关键词 cu alloyed layer stainless steels incremental forming friction and wear
下载PDF
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
2
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains
3
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 Al–Zn–Mg–cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Strengthening mechanism of T8-aged Al-Cu-Li alloy with increased pre-deformation
4
作者 San-xi DENG Jin-feng LI +5 位作者 Li WANG Yue-yan CHEN Zheng-wu XIANG Peng-cheng MA Yong-lai CHEN Dan-yang LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3151-3169,共19页
The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthe... The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels. 展开更多
关键词 Al−cu−Li alloy PRE-DEFORMATION PRECIPITATION STRENGTH strengthening mechanism
下载PDF
Damage characteristics of Cu−Cr−Zr alloy rail of electromagnetic railgun after simulated launch
5
作者 Ke-chang SHEN Qing-tao GONG +3 位作者 Zhong-yu SUN Hong-tu SUN Bin-jie MA Wei-min WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2589-2604,共16页
The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,h... The damage characteristics of different speed sections of Cu−Cr−Zr alloy rail after simulated launch were studied.The microstructure,morphologies and properties of samples were investigated by using XRD,XPS,EBSD,SEM,hardness test,electrochemical test and DSC techniques.It was found that deposition layers were formed on the surfaces of the simulated launch samples.The thickness and surface roughness of these deposition layers increased with increasing the heat effect,suggesting a launch speed dependent damage degree of the arc ablation.The hardness variation of samples is attributed to the effects of the deposition layer and deformation hardening.The surface deposition layer affects corrosion resistance and crystalline characteristics,leading to changes in subsequent service performances.Additionally,the surface texture and plastic deformation ability of the samples are related to the recrystallization degree and deformation grain amount. 展开更多
关键词 cu−Cr−Zr alloy electromagnetic railgun arc ablation microstructure performance
下载PDF
Corrosion behavior of 2A97 Al-Cu-Li alloys in different thermomechanical conditions by quasi-in-situ analysis
6
作者 You Lü Xiang-zhe MENG +2 位作者 Yan-yan LI Ze-hua DONG Xin-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2772-2786,共15页
As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor... As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions. 展开更多
关键词 Al−cu−Li alloy corrosion behavior quasi-in situ analysis grain-stored energy thermomechanical treatment
下载PDF
Improving comprehensive properties of Cu-11.9Al-2.5Mn shape memory alloy by adding multi-layer graphene carried by Cu_(51)Zr_(14)inoculant particles
7
作者 Zhi-xian JIAO Qing-zhou WANG +4 位作者 Yan-jun DING Fu-xing YIN Chao-hui XU Cui-hong HAN Qi-xiang FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3265-3281,共17页
In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy throu... In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed. 展开更多
关键词 cu−Al−Mn shape memory alloy multilayer graphene(MLG) microstructure interface damping mechanical properties
下载PDF
Influence of thermomechanical treatment on recrystallization and softening resistance of Cu-6.5Fe-0.3Mg alloy
8
作者 Zhen-xia LIU Da-wei YUAN +5 位作者 Xin LUO Lan-hao WANG Jin-shui CHEN Hui-ming CHEN Xiang-peng XIAO Bin YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2900-2917,共18页
The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardn... The recrystallization and softening resistance of a Cu-6.5Fe-0.3Mg(mass fraction,%)alloy prepared by Process 1(cold rolling heat treatment)and Process 2(hot/cold rolling heat treatment)were studied using Vickers hardness tests,tensile tests,scanning electron microscopy and transmission electron microscopy.The softening temperature,hardness and tensile strength of the alloy prepared by Process 2 were 110°C,HV 15 and 114 MPa higher,respectively,than those of the alloy prepared by Process 1 after aging at 300°C.The recrystallization activation energy of the alloys prepared by Process 1 and Process 2 were 72.83 and 98.11 kJ/mol,respectively.The pinning effects of the precipitates of the two alloys on grain boundaries and dislocations were basically the same.The softening mechanism was mainly attributed to the loss of dislocation strengthening.The higher Fe fiber density inhibited the average free migration path of dislocations and grain boundary migration in the alloy,which was the main reason for higher softening temperature of the alloy prepared by Process 2. 展开更多
关键词 cu−6.5Fe−0.3Mg alloy hot rolling recrystallization activation energy softening mechanism dislocation strengthening
下载PDF
Influence of technical parameters on strength and ductility of AlSi9Cu3 alloys in squeeze casting 被引量:9
9
作者 宾仕博 邢书明 +2 位作者 田龙梅 赵宁 李兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期977-982,共6页
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure... An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings. 展开更多
关键词 squeeze casting A1Si9cu3 alloy STRENGTH DUCTILITY
下载PDF
Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint 被引量:3
10
作者 陈国庆 张秉刚 +1 位作者 刘伟 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2416-2420,共5页
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c... QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal. 展开更多
关键词 cu alloy Ti alloy electron beam superposition welding IMC-layer
下载PDF
Effects of grain refining and modification on mechanical properties and microstructures of Al-7.5Si-4Cu cast alloy 被引量:2
11
作者 刘光磊 司乃潮 +1 位作者 孙少纯 吴勤方 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期946-953,共8页
Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners a... Al-7.5Si-4Cu cast alloy melt modified by Al-5Ti-B, RE and Al-10Sr master alloys were poured in the chromite sand moulds, to investigate comparatively the effects of individual or combined additions of grain refiners and modifiers on the mechanical properties, microstructures, grain refining and modification, and intermetallic compounds of the alloy. The results show that the mechanical properties and the microstructures of Al-7.5Si-4Cu cast alloys are improved immensely by combining addition of 0.8%Al-5Ti-B, 0.1%RE and 0.1%Al-10Sr grain refiners and modifiers compared with the individual addition and cast conditions. For individual addition condition, addition of 0.8%Al-5Ti-B master alloy can obtain superior tensile strength, Brinell hardness and finer equiaxedα(Al) dendrites. The alloy with 0.1%RE master alloy shows the highest improvement in ductility because the rare earth can purify the molten metal and change the shape of intermetallic compounds. While the alloy with 0.1%Al-10Sr modifier shows only good improvement in yield strength, and the improvement of other performance is unsatisfactory. The Al-10Sr modifier has a significant metamorphism for the eutectic silicon, but will make the gas content in the aluminum alloy melt increase to form serious columnar grain structures. The effects of grain refining and modification on mean area and aspect ratio have the same conclusions obtained in the mechanical properties and the microstructures analyses. 展开更多
关键词 Al-7.5Si-4cu cast alloy grain refinement modification treatment mechanical properties MICROSTRUCTURES
下载PDF
Microstructure and properties of Al-0.70Fe-0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming 被引量:6
12
作者 张晓苑 张辉 +1 位作者 孔祥鑫 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1763-1769,共7页
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri... A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases. 展开更多
关键词 A1-0.70Fe-0.24cu alloy horizontal continuous casting continuous extrusion forming MICROSTRUCTURE PROPERTY
下载PDF
Quench sensitivity and microstructures of high-Zn-content Al−Zn−Mg−Cu alloys with different Cu contents and Sc addition 被引量:24
13
作者 Ying-hao PENG Chong-yu LIU +2 位作者 Li-li WEI Hong-jie JIANG Zhen-jiang GE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期24-35,共12页
The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensi... The Zn,Cu,and Sc contents of 7xxx Al alloys were adjusted according to the chemical composition of a 7085 Al alloy,and the effects of Zn and Cu contents and Sc addition on the microstructures,hardness,and quench sensitivity of the 7xxx Al alloys were studied.The alloys with high Zn content and Sc addition exhibited higher hardness than the 7085 alloy at the position 3 mm away from the quenching end.The density ofηand T phases increased with the increase in Zn and Cu contents,and the Sc addition led to the formation of the Y phase and moreηphases at the position 120 mm away from the quenching end.Compared with the 7085 alloy,the high Zn−high Cu and Sc-added alloys exhibited higher quench sensitivity,while the simultaneous increase in Zn content and decrease in Cu content could enhance the hardness and reduce the quench sensitivity of the 7085 alloy. 展开更多
关键词 Al−Zn−Mg−cu alloy quench sensitivity Al3(Sc Zr) Y phase grain boundary
下载PDF
Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn-38Al-2.5Cu alloys
14
作者 刘婷 司乃潮 +2 位作者 刘光磊 张瑞 祁昌洋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1775-1782,共8页
The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed b... The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed because of the Si addition. Zn-38Al-2.5Cu-0.55Si alloy shows the dramatically refined microstructure and the best mechanical properties. When the Si addition exceeds 0.55%,αdendrites develop and Si phases become larger and aggregate along the dendrites boundaries, decreasing the mechanical properties. Oxides and pits formed by the plastic deformation are the main factors of cracks initiation. During the early stage of crack propagation, the cracks grow at a high speed well described by Paris law because of the porous and loose oxide, and mainly propagate along the dendrites boundaries. During the slow-growth stage, secondary cracks share the energy of crack growth, delaying the propagation of cracks, and the cracks propagate and fracture by the mixture of intergranular and transgranular modes. 展开更多
关键词 Zn-38Al-2.5cu alloy Si addition mechanical properties thermal fatigue crack growth OXIDATION
下载PDF
Microstructure evolution and optimum parameters analysis for hot working of new type Mg-8Sn-2Zn-0.5Cu alloy 被引量:6
15
作者 Li-ping ZHONG Yong-jian WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第11期2290-2299,共10页
The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble... The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1. 展开更多
关键词 Mg-8Sn-2Zn-0.5cu alloy hot deformation dynamic recrystallization processing map
下载PDF
Effects of Fe content on microstructure and properties of Cu−Fe alloy 被引量:10
16
作者 Meng WANG Qian-ru YANG +6 位作者 Yan-bin JIANG Zhou LI Zhu XIAO Shen GONG Yong-ru WANG Chuang-li GUO Hai-gen WEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第10期3039-3049,共11页
Cu−Fe alloys with different Fe contents were prepared by vacuum hot pressing.After hot rolling and aging treatment,the effects of Fe content on microstructure,mechanical properties and electrical conductivity of Cu−Fe... Cu−Fe alloys with different Fe contents were prepared by vacuum hot pressing.After hot rolling and aging treatment,the effects of Fe content on microstructure,mechanical properties and electrical conductivity of Cu−Fe alloys were studied.The results show that,when w(Fe)<60%,the dynamic recrystallization extent of both Cu phase and Fe phase increases.When w(Fe)≥60%,Cu phase is uniformly distributed into the Fe phase and the deformation of alloy is more uniform.With the increase of the Fe content,the tensile strength of Cu−5wt.%Fe alloy increases from 305 MPa to 736 MPa of Cu−70wt.%Fe alloy,the elongation decreases from 23%to 17%and the electrical conductivity decreases from 31%IACS to 19%IACS.These results provide a guidance for the composition and processing design of Cu−Fe alloys. 展开更多
关键词 cu−Fe alloy microstructure properties powder metallurgy
下载PDF
Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy 被引量:12
17
作者 Zheng-hua Deng Hai-qing Yin +7 位作者 Xue Jiang Cong Zhang Guo-fei Zhang Bin Xu Guo-qiang Yang Tong Zhang Mao Wu Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期362-373,共12页
The machine-learning approach was investigated to predict the mechanical properties of Cu–Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new m... The machine-learning approach was investigated to predict the mechanical properties of Cu–Al alloys manufactured using the powder metallurgy technique to increase the rate of fabrication and characterization of new materials and provide physical insights into their properties.Six algorithms were used to construct the prediction models, with chemical composition and porosity of the compacts chosen as the descriptors.The results show that the sequential minimal optimization algorithm for support vector regression with a puk kernel(SMOreg/puk) model demonstrated the best prediction ability. Specifically, its predictions exhibited the highest correlation coefficient and lowest error among the predictions of the six models. The SMOreg/puk model was subsequently applied to predict the tensile strength and hardness of Cu–Al alloys and provide guidance for composition design to achieve the expected values. With the guidance of the SMOreg/puk model, Cu–12Al–6Ni alloy with a tensile strength(390 MPa) and hardness(HB 139) that reached the expected values was developed. 展开更多
关键词 powder metallurgy tensile strength HARDNESS machine learning cu–Al alloy SMOreg/puk
下载PDF
Microstructure evolution and mechanical properties of Al−3.6Cu−1Li alloy via cryorolling and aging 被引量:10
18
作者 Chang LI Han-qing XIONG +5 位作者 Laxman BHATTA Lin WANG Zhao-yang ZHANG Hui WANG Charlie KONG Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2904-2914,共11页
An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the ro... An Al−3.6Cu−1Li alloy was subjected to room temperature rolling and cryorolling to investigate their effects on microstructure evolution and mechanical properties.The microstructure and aging characteristics of the room temperature-rolled and the cryorolled alloys with 70%and 90%of thickness reductions were studied by microstructure analysis and mechanical tests.The samples subjected to cryorolling with 90%of thickness reduction have high strength and good toughness.This is mainly due to the inhibition of dynamic recovery and the accumulation of high-density dislocations in cryorolled samples.In addition,the artificial aging reveals that the temperature at which peak hardness is attained is inversely proportional to the deformation amount and directly proportional to the rolling temperature.Moreover,bright field images of cryorolled samples after aging indicate the existence of T1(Al2CuLi)precipitates.This suggests that the high stored strain energy enhances the aging kinetics of the alloy,which further promotes the nucleation of T1 phases. 展开更多
关键词 Al−cu−Li alloy CRYOROLLING AGING precipitation strengthening mechanical property
下载PDF
Behavior and influence of Pband Biin Ag-Cu-Zn brazing alloy 被引量:8
19
作者 薛松柏 钱乙余 +2 位作者 胡晓萍 赵振清 郝和铭 《China Welding》 EI CAS 2000年第1期44-49,共6页
The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag Cu Zn filler metal have been studied. The results show that Pb has little effect on both above pro... The effects of trace content of Pb and Bi elements on the spreading property and the strength of brazed joints of Ag Cu Zn filler metal have been studied. The results show that Pb has little effect on both above properties, and Bi has remarkable influence on the spreading property but little effect on the strength of brazed joint. Pb and Bi dissolve into the Ag Cu Zn matrix and will melt and gather at lower temperature when that alloy is being heated. Therefore a liquid forms on the surface of the Ag Cu Zn alloy and overlays the melting alloy, then keeps the filler metal away from the materials being joined, and so decreases the spreading property. 展开更多
关键词 Pb Bi Ag cu Zn alloy spreading property STRENGTH
下载PDF
Effect of cryorolling on microstructure and property of high strength and high conductivity Cu−0.5wt.%Cr alloy 被引量:7
20
作者 Peng-chao ZHANG Jie-fu SHI +2 位作者 Ying-shui YU Jun-cai SUN Ting-ju LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2472-2479,共8页
Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr... Cu−0.5wt.%Cr alloy with high strength and high conductivity was processed by cryorolling(CR)and room temperature rolling(RTR),respectively.The microstructure,mechanical property and electrical conductivity of Cu−0.5Cr alloy after CR/RTR and aging treatment were investigated.The results indicate that obvious dislocation entanglement can be observed in matrix of CR alloy.The Cr particles in the alloy after CR and aging treatment possess finer particle size and exhibit dispersive distribution.The peak hardness of CR alloy is HV 167.4,significantly higher than that of RTR alloy.The optimum mechanical property of CR alloy is obtained after aging at 450℃ for 120 min.The conductivity of CR Cu−0.5Cr alloy reaches 92.5%IACS after aging at 450℃ for 120 min,which is slightly higher than that of RTR alloy. 展开更多
关键词 cu−Cr alloy CRYOROLLING microstructure mechanical property electrical conductivity
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部