期刊文献+
共找到2,431篇文章
< 1 2 122 >
每页显示 20 50 100
Textural and compositional variation of mica from the Dexing porphyry Cu deposit:constraints on the behavior of halogens in porphyry systems
1
作者 Yan Liu Jian-Feng Gao +1 位作者 Liang Qi Kang Min 《Acta Geochimica》 EI CAS CSCD 2023年第2期221-240,共20页
The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from th... The Dexing porphyry deposit is the largest porphyry Cu–Mo–Au deposit in South China.Biotite composition can record the physicochemical conditions and evolution history of magmatic-hydrothermal system.Biotite from the Dexing porphyry deposit could be divided to three types:primary magmatic biotite(Bi-M),hydrothermal altered magmatic biotite(Bi-A)and hydrothermal biotite(Bi-H).The temperature of Bi-M and Bi-H range from 719 to 767℃ and 690 to 727℃,respectively.Both magmatic and hydrothermal biotite have high Fe^(3+)/Fe^(2+)ratios(from 0.18 to 0.24)and XMgvalues(from 0.57 to 0.66),indicating a high oxygen fugacity.BiM has F lower than Bi-A and Bi-H(up to 0.26 wt%),but has Cl(Cl=0.18–0.30 wt%)similar to Bi-A and Bi-H(Cl=0.21–0.35 wt%),suggesting that high Cl/F ratios of early hydrothermal fluid may result from the exsolution from high Cl magma.From potassic alteration zone to phyllic and propylitic alteration zones,Cl decreases with increasing Cu,whereas F increases roughly.Therefore,Cl mostly originate from magma,but enrichment of F possibly results from reaction of fluids and Neoproterozoic strata.Negative correlation between Cl and Cu indicates that Cl might act as an important catalyst during Cu mineralization process.Biotite from Dexing has similar halogen compositions to other porphyry Cu-/Mo deposits in the world.Chlorine contents of hydrothermal fluid may be critical for Cu transportation and enrichment,while consumption of Cl would promote Cu deposition. 展开更多
关键词 HALOGEN Dexing porphyry deposit BIOTITE GEOCHEMISTRY Porphyry cu deposit
下载PDF
Chemical compositions of sulfides in the porphyry Cu ores,Yangla Cu deposit,Yunnan,China:implication for ore genesis 被引量:3
2
作者 Xinfu Wang Bo Li +2 位作者 Zuopeng Xiang Yan Yue Guo Tang 《Acta Geochimica》 EI CAS CSCD 2020年第6期947-972,共26页
The Yangla Cu deposit is the largest ore deposit in the Jinshajiang polymetallic metallogenic belt,northwest Yunnan,China.There is no consensus on the genesis of the ore deposit owing to the limited studies on the che... The Yangla Cu deposit is the largest ore deposit in the Jinshajiang polymetallic metallogenic belt,northwest Yunnan,China.There is no consensus on the genesis of the ore deposit owing to the limited studies on the chemical compositions of sulfides.This study used an electron probe micro-analyzer to constrain the chemical compositions of pyrite,chalcopyrite,molybdenite,and sphalerite in the porphyry Cu ore of the Yangla Cu deposit and compared them with the chemical compositions of sulfides in the skarn Cu ore.The trace element contents and their occurrences were used to estimate the metallogenic temperature and infer the genesis of the Yangla deposit.The results show that the sulfides in the porphyry Cu ores have variations of ore element concentrations relative to their theoretical values.Pyrite is depleted in S but elevated in Fe;chalcopyrite is depleted in Cu,Fe,and S;and molybdenite and sphalerite are enriched in S whilst depleted in Mo and Zn.The concentrations of the main metallogenic elements Cu,Fe,Mo,Zn,and S in the porphyry are generally lower than those in skarn,suggesting that the porphyry ore was formed in a moderate to moderate-high temperature metallogenic environment.The formation time may also be slightly later than that of the skarn Cu ore.Elements such as As,Co,Cu.Pb,Zn,Mo,Cd,and Ni mainly exist as isomorphic replacements and mineral inclusions in the sulfides of both porphyry and skarn Cu ores.The trace element features of sulfides in the two ore bodies show that the Yangla Cu deposit may be a composite super imposed ore deposit,and让s formation has undergone the process of exhalative-sedimentary to skarnporphyry mineralization. 展开更多
关键词 Sulfides Trace elements Chemical composition Yangla cu deposit YUNNAN
下载PDF
Fluid inclusions,C-H-O-S-Pb isotope systematics,geochronology and geochemistry of the Budunhua Cu deposit,northeast China:Implications for ore genesis 被引量:1
3
作者 Kaituo Shi Keyong Wang +3 位作者 Xueli Ma Shunda Li Jian Li Rui Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1145-1161,共17页
The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing’an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Bu... The Budunhua Cu deposit is located in the Tuquan ore-concentrated area of the southern Great Xing’an Range,NE China.This deposit includes the southern Jinjiling and northern Kongqueshan ore blocks,separated by the Budunhua granitic pluton.Cu mineralization occurs mainly as stockworks or veins in the outer contact zone between tonalite porphyry and Permian metasandstone.The ore-forming process can be divided into four stages involving stage Ⅰ quartz-pyrite-arsenopyrite;stage Ⅱ quartz-pyrite-chalcopyrite-pyrrhotite;stage Ⅲ quartz--polynetallic sulfides;and stage IV quartz-calcite.Three types of fluid inclusions(FIs) can be distinguished in the Budunhua deposit:liquid-rich two-phase aqueous FIs(L-type),vapour-rich aqueous FIs(V-type),and daughter mineral-bearing multi-phase FIs(S-type).Quartz of stages Ⅰ-Ⅲ contains all types of FIs,whereas only L-type FIs are evident in stage Ⅳ veins.The coexisting V-and S-type FIs of stages Ⅰ-Ⅲ have similar homogenization temperatures but contrasting salinities,which indicates that fluid boiling occurred.The FIs of stages Ⅰ,Ⅱ,Ⅲ,and Ⅳyield homogenization temperatures of 265-396℃,245-350℃,200-300℃,and 90-228℃ with salinities of3.4-44.3 wt.%,2.9-40.2 wt.%,1.4-38.2 wt.%,and 0.9-9.2 wt.% NaCl eqv.,respectively.Ore-forming fluids of the Budunhua deposit are characterized by high temperatures,moderate salinities,and relatively oxidizing conditions typical of an H2 O-NaCl fluid system.Mineralization in the Budunhua deposit occurred at a depth of0.3-1.5 km,with fluid boiling and mixing likely being responsible for ore precipitation.C-H-O-S-Pb isotope studies indicate a predominantly magmatic origin for the ore-forming fluids and materials.LA-ICP-MS zircon U-Pb analyses indicate that ore-forming tonalite porphyry and post-ore dioritic porphyrite were formed at 151.1±1.1 Ma and 129.9±1.9 Ma,respectively.Geochemical data imply that the primary magma of the tonalite porphyry formed through partial melting of Neoproterozoic lower crust.On the basis of available evidence,we suggest that the Budunhua deposit is a porphyry ore system that is spatially,temporally,and genetically associated with tonalite porphyry and formed in a post-collision extensional setting following closure of the Mongol-Okhotsk Ocean. 展开更多
关键词 Fluid inclusion C-H-O-S-Pb isotopes Zircon U-Pb geochronology Whole-rock geochemistry Budunhua cu deposit Southern great Xing’an range
下载PDF
3D geological modeling for mineral resource assessment of the Tongshan Cu deposit,Heilongjiang Province,China 被引量:28
4
作者 Gongwen Wang Lei Huang 《Geoscience Frontiers》 SCIE CAS 2012年第4期483-491,共9页
(3DGM ) 三维的地质的建模帮助地质学家到份量上学习在三维(3D ) 空间组织那定义在地质的目标之间的时间、空间的关系。3D 性质模型能也被用来推断或推出地质的目标的原因。3DGM 技术为多样的地球科学信息,当模特儿的 3D,和矿物质资... (3DGM ) 三维的地质的建模帮助地质学家到份量上学习在三维(3D ) 空间组织那定义在地质的目标之间的时间、空间的关系。3D 性质模型能也被用来推断或推出地质的目标的原因。3DGM 技术为多样的地球科学信息,当模特儿的 3D,和矿物质资源的量的计算的抽取提供技术支持。把概念和一个矿石沉积物模型,基于 metallogenic 3DGM 技术被使用分析 Tongshan Cu 沉积物的地质的特征以便定义一个 metallogenic 模型并且开发一种虚拟地上凿穿技术;一个 BP 神经网络和一种 3D 插值技术被联合在 3D 环境集成多重地球科学信息。结果显示:( 1 )在magmatic热水的 Cu polymetallic 的概念的基础上,矿化作用和斑岩 Cu 沉积物当模特儿,为在学习区域(地质学,地球物理,地球化学,地上凿穿,和剖面图数据)的矿化作用的多重地球科学信息的一个空间关系数据库被建立,并且 3D metallogenic 包括矿化作用阶层, granodiorite ,改变岩石,和磁性的异例的地质的对象被构造;(2 ) 在 3D 矿石存款模型,的基础上,从 94 地上凿穿和 21 节的 23,800 有效调查被使用与一个 kriging 插值方法建立 3D orebody 模型;(3 ) 联合了包含 21 节的 23,800 调查,用有 BP 网络的 VC++ 和 OpenGL 站台,虚拟地上凿穿和虚拟节,并且一个改进反的距离插值(IDW ) 方法被用来预言矿化作用潜力指向并且描出(房间的 Cu 等级不少于 0.1%) ;(4 ) 3D 矿石身体的比较, metallogenic 矿化作用的地质的对象,和在学习区域的矿化作用模型的潜在的目标,描出空间的 3D 和在矿石身体,改变岩石, metallogenic 阶层,恼人的岩石,和 Tongshan 之中的原因的进程指责。这研究提供为对 Tongshan Cu 沉积物和包围探索和矿物质资源的评价的重要技术支持和一个科学基础。 展开更多
关键词 三维地质建模 矿产资源评价 斑岩铜矿 铜山 黑龙江省 三维矿体模型 KRIGING 多金属成矿
下载PDF
Geochronology and Geochemistry of Metallogenetic Porphyry Bodies from the Nongping Au-Cu Deposit in the Eastern Yanbian Area, NE China: Implications for Metallogenic Environment 被引量:7
5
作者 REN Yunsheng JU Nan +3 位作者 ZHAO Hualei WANG Hui HOU Kejun LIU Shen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期619-629,共11页
The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichm... The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichment in sodium, and classified into sodic rocks of low-K tholeiitic basalt series. Except slightly low Sr content, the rock basically has the geochemical characteristics of the adakite: relatively high A12O3 content, relatively low MgO content, depletion in Y and Yb; relative enrichment in large ion lithophile elements (LILEs) and light rare-earth elements (LREEs), relatively low content of high field strength elements (HFSEs); positive Eu anomaly or weak negative Eu anomaly. In situ zircon dating technology LA-MC-ICP-MS was used to conduct single-grain zircon dating of biotite granodiorite porphyry, and the results show that the age of metallogenetic porphyry body is 100.04±0.88 Ma, indicating that the porphyry bodies were emplaced in the late Cretaceous period. According to the regional tectonic setting and the comparison with the same kind of deposits, we think that the metallogenetic porphyry bodies in the Nongping Au-Cu deposit have a close genetic connection with the subduction of the Pacific plate in the late Yanshanian period. The adakitic magma generated from partial melting of the subducting plate has high formation temperature, high oxygen fugacity, and volatile constituents' enrichment, so it is helpful for enrichment of metallogenetic elements and plays an important role in the formation of porphyry Au-Cu deposits in this region. 展开更多
关键词 花岗闪长斑岩 地球化学特征 金铜矿床 成矿环境 延边地区 机构 年代学 轻稀土元素
下载PDF
Lead isotope geochemical characteristics of Pb-Zn-Cu deposits on the southwestern margin of Tarim,and their significance 被引量:3
6
作者 SHEN Nengping ZHANG Zhengwei +3 位作者 YOU Fuhua PENG Jiantang ZHU Xiaoqing XIAO Jiafei 《Chinese Journal Of Geochemistry》 EI CAS 2012年第4期362-375,共14页
The polymetallic(Pb,Zn,Cu,etc) ore belt on the southwestern margin of Tarim is one of the major regions with the greatest prospecting potential in Xinjiang.Reported in this paper are the lead isotope data for 66 sulfi... The polymetallic(Pb,Zn,Cu,etc) ore belt on the southwestern margin of Tarim is one of the major regions with the greatest prospecting potential in Xinjiang.Reported in this paper are the lead isotope data for 66 sulfide samples(including 50 galena samples,15 chalcopyrite samples and 1 pyrite sample) collected from such representative deposits as Tamu,Tiekelike,Kalangu,Abalieke,etc.in this ore belt.The Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb in the galena samples range from 17.931 to 18.176,15.609 to 15.818 and 38.197 to 38.944,with the average values of 18.017,15.684 and 38.462,respectively.Those in the chalcopyrite samples range from 17.926 to 18.144,15.598 to 15.628 and 38.171 to 38.583,with the average values of 18.020,15.606 and 38.262,respectively.The pyrite sample has the Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb to be 17.980,15.604 and 38.145,respectively.In combination with the previous Pb isotope data for sulfides,it is found that there is only a slight variation in the Pb isotopic composition of galena,chalcopyrite,sphalerite and pyrite in the ore belt.However,there is some difference in Pb isotopic characteristics between galena and chalcopyrite,especially the Pb isotopic composition of galena shows an obvious linear correlation with some other relevant parameters(e.g.β and γ).The comprehensive analysis suggested that lead in galena(maybe including sphalerite and pyrite) was derived principally from wall rocks and underlying basement,and that in chalcopyrite only originated from the basement.The single-stage model ages of these sulfides couldn't indicate the time limit of metallogenesis(Pb,Zn,Cu,etc.),and the positive linear correlations for the Pb isotopic composition of galena are of no single-stage and two-stage Pb-Pb isochron significance.Furthermore,there are significant differences in Pb isotopic composition characteristics between the genetic type of deposits in this polymetallic ore belt and the Mississippi Valley type(MVT).In addition,the authors also pointed out that there is a phenomenon of differentiation(not paragenesis) for lead and copper elements during the process of metallogenesis in this ore belt. 展开更多
关键词 同位素地球化学特征 塔里木盆地 方铅矿 闪锌矿 铜沉积 南缘 多金属成矿带 铅同位素比值
下载PDF
Fluid Inclusion and Carbon-Oxygen Isotope Studies of the Hujiayu Cu Deposit,Zhongtiao Mountains,China:Implications for Synmetamorphic Copper Remobilization 被引量:1
7
作者 QIU Zhengjie FAN Hongrui +5 位作者 LIU Xuan WEN Bojie HU Fangfang YANG Kuifeng GUO Shuanglong ZHAO Fengchun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期726-745,共20页
The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carb... The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carbonate rocks.The ore minerals comprise mainly chalcopyrite,with minor sphalerite,siegenite[(Co,Ni)_3S_4],and clausthalite[Pb(S,Se)].The gangue minerals are mainly quartz and dolomite,with minor albite.Four fluid inclusion types were recognized in the chalcopyrite-pyrite-dolomite-quartz veins,including CO_2-rich inclusions(type Ⅰ),low-salinity,liquid-dominated,biphase aqueous inclusions(type Ⅱ),solid-bearing aqueous inclusions(type Ⅲ),and solid-bearing aqueous-carbonic inclusions(type Ⅳ).Type I inclusion can be further divided into two sub-types,i.e.,monophase CO_2 inclusions(type Ⅰa) and biphase CO_2-rich inclusions(with a visible aqueous phase),and type Ⅲ inclusion is divided into a subtype with a halite daughter mineral(type Ⅲa) and a subtype with multiple solids(type Ⅲb).Various fluid inclusion assemblages(FIAs) were identified through petrographic observations,and were classified into four groups.The group-1 FIA,consisting of monophase CO_2 inclusions(type Ⅰa),homogenized into the liquid phase in a large range of temperatures from-1 to 28℃,suggesting post-entrapment modification.The group-2 FIA consists of type Ⅰb,Ⅲb and Ⅳ inclusions,and is interpreted to reflect fluid immiscibility.The group-3 FIA comprises type Ⅱ and Ⅲa inclusions,and the group-4FIA consists of type Ⅱ inclusions with consistent phase ratios.The group-1 and group-2 FIAs are interpreted to be entrapped during mineralization,whereas group-3 and group-4 FIAs probably represent the post-mineralization fluids.The solid CO_2 melting temperatures range from-60.6 to56.6℃ and from-66.0 to-63.4℃ for type Ⅰa and type Ⅳ inclusions,respectively.The homogenization temperatures for type Ⅱ inclusions range from 132 to 170℃ for group-3 FIAs and115 to 219℃ for group-4 FIAs.The halite melting temperatures range from 530 to 562℃ for typeⅢ b and Ⅳ inclusions,whereas those for type Ⅲa inclusions range from 198 to 398℃.Laser Raman and SEM-EDS results show that the gas species in fluid inclusions are mainly CO_2 with minor CH_4,and the solids are dominated by calcite and halite.The calcite in the hosting marble and dolomite in the hydrothermal veins have δ^(13)C_(V-pdb) values of-0.2 to 1.2‰ and-1.2 to-6.3‰,and δ^(18)O_(v-smow) values of 14.0 to 20.8 ‰ and 13.2 to 14.3‰,respectively.The fluid inclusion and carbon-oxygen isotope data suggest that the ore-forming fluids were probably derived from metamorphic fluids,which had reacted with organic matter in sedimentary rocks or graphite and undergone phase separation at 1.4-1.8 kbar and 230-240℃,after peak metamorphism.It is proposed that the Hujiayu Cu deposit consists of two mineralization stages.The early stage mineralization,characterized by disseminated and veinlet copper sulfides,probably took place in an environment similar to sediment-hosted stratiform copper mineralization.Ore minerals formed in this precursor mineralization stage were remobilized and enriched in the late metamorphic hydrothermal stage,leading to the formation of thick quartz-dolomite-sulfides veins. 展开更多
关键词 流体包裹体 碳氧同位素 中条山 SYN 铜矿 转运 变质 中国
下载PDF
Geology,Geochemistry and Zircon U-Pb Geochronology of Porphyries in the Dabate Mo-Cu Deposit,Western Tianshan,China:Petrogenesis and Tectonic Implications 被引量:7
8
作者 DUAN Shigang ZHANG Zuoheng +1 位作者 WANG Dachuan LI Fengming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期530-544,共15页
The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the D... The Dabate Mo-Cu deposit is a medium-sized porphyry-type deposit in the Sailimu Lake region, western Tianshan, China. We present the geology, geochemistry and zircon U-Pb geochronology of granite porphyries from the Dabate district with the intent to constrain their tectonic setting and petrogenesis. Porphyries in the Dabate district include granite porphyry I(gray white color with large phenocrysts), granite porphyry II(pink color with small phenocrysts) and quartz porphyry. Granite porphyry II is the Cu and Mo ore-bearing granitoid in the Dabate deposit. LA-ICPMS zircon U-Pb analyses indicate that granite porphyry II was emplaced at 284.2±1.8 Ma. Granite porphyry I and II have similar geochemical features and are both highly fractionated granites:(1) They have high SiO_2 content(70.93–80.18 wt% and 72.14–72.64 wt%, respectively), total alkali(7.58–8.95 wt% and 9.35–9.68 wt%, respectively), mafic index(0.95–0.98 and 0.93–0.94, respectively) and felsic index(0.79–0.94 and 0.89–0.91, respectively);(2) They are characterized by pronounced negative Eu anomaly, "seagullstyle" chondrite-normalized REE patterns and "tetrad effect" of REE;(3) They are rich in Rb, K, Th, Ta, Zr, Hf, Y and REE, but depleted in Sr, P, Ti and Nb. The magma of granite porphyries in Dabate can be interpreted to have been generated by partial melting of the upper crust due to mantle-derived magma underplating in a post-collisional extensional setting. 展开更多
关键词 锆石U-PB年代学 斑岩型矿床 岩石成因 铜矿床 天山西部 构造意义 地质 中国
下载PDF
Contrast in Fluid M etallogeny between the Tianmashan Au-S Deposit and the Datuanshan Cu Deposit in Tongling,Anhui Province 被引量:2
9
作者 LEE Hyun Koo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第1期116-124,共9页
A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongli... A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion of Cu or Au in the late stage of the fluid ore-forming process. This is also an important metallogenic factor for the stratabound skarn Au-S ore deposit in Tianmashan and stratabound skarn Cu ore deposit in Datuanshan. 展开更多
关键词 FLUID inclusion FLUID ore-forming process CONTRAST in FLUID metallogeny Au-S ORE deposit cu ORE deposit magmatic fluid groundwater fluid Tongling Anhui Province
下载PDF
The multistage genesis of the giant Dongshengmiao Zn-Pb-Cu deposit in western Inner Mongolia,China:Syngenetic stratabound mineralization and metamorphic remobilization 被引量:2
10
作者 Richen Zhong Wenbo Li 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期529-542,共14页
The genesis of the giant Dongshengmiao in the northern margin of the North China Block has been debated since its discovery in the 1950 s,because it shows geological and geochemical characteristics with both syngeneti... The genesis of the giant Dongshengmiao in the northern margin of the North China Block has been debated since its discovery in the 1950 s,because it shows geological and geochemical characteristics with both syngenetic and epigenetic signatures.It has geological settings and sulfur and lead isotopic compositions that are similar with typical SEDEX(sedimentary exhalative) deposit,while the Zn-Pb-Cu mineralization was controlled by shear deformation and metamorphism,showing similarities with orogenic-type deposits.In this contribution,both the syngenetic and epigenetic features of the Dongshengmiao are envisaged,and accounted for in the context of a genetic model with two metallogenic periods.Massive pyrite at the Dongshengmiao was mostly recrystallized during metamorphism,but finegrained texture was locally preserved,indicating its syngenetic origin.On the contrary,all the Zn-Pb-Cu ores observed in this study show characteristics of epigenetic hydrothermal mineralization that controlled by metamorphism and accompanying shear deformation.The sulfur and lead isotopic compositions of sphalerite and galena indicate that they were in situ remobilized from a syngenetic stratabound source,and the oxygen and hydrogen isotopic ratios of ore-fluid indicate that the large-scale remobilization was assisted by metamorphic fluid.The thermodynamic modeling indicates that the orefluid during remobilization has a great potential of transporting Cu.This may account for the abnormally enriched Cu in the remobilized SEDEX deposit.The metamorphic fluid might strip Cu from the fluid source during devolatilization,and overprint it on the Zn-Pb orebodies during remobilization.A secondary flowthrough modeling reveals that Zn- and Cu-sulfides would be preferentially redistributed in Fe-rich carbonates during remobilization,as a result of fluid-rock interaction.Conclusively,a multistage genetic model is proposed.During the development of the Proterozoic rift,stratabound Zn-Pb mineralization took place in a SEDEX ore-forming system.The syngenetic sulfides subsequently underwent a large-scale fluidassisted remobilization during the early Cretaceous metamorphism and thrusting,forming the shear zone-controlled epigenetic orebodies.During the remobilization process,Cu was scavenged from the source of metamorphic fluid,and deposited accompanying remobilized Zn-Pb sulfides.Shear structures and Fe-rich carbonates are ideal sites for redistribution and re-deposition of remobilized sulfide. 展开更多
关键词 铅锌矿床 变质处理 东升庙 成矿期 内蒙古西部 成因 层控 SEDEX矿床
下载PDF
Geochemistry of meta-volcanic rocks from the Longbohe Cu deposit, Yunnan Province, China: Implications for the genesis and tectonic setting
11
作者 CUI Yinliang QING Dexian CHEN Yaoguang 《Chinese Journal Of Geochemistry》 EI CAS 2007年第3期312-324,共13页
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated wi... The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution. 展开更多
关键词 地球化学 火山岩石 矿石
下载PDF
Potential of Magmatic Ni-Cu Deposits of the Hualong Block,Qilian Mountains
12
作者 Zhaowei Zhang Xi’an Center of Geological Survey,China Geological Survey,Xi’an 710054,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期167-167,共1页
The Jinchuan magmatic Ni-Cu deposit,located in the Longshou Mountain region,is the largest producer of Ni and Cu in China,with mineralization being related to mafic and ultramafic magmatism.Previous studies have shown... The Jinchuan magmatic Ni-Cu deposit,located in the Longshou Mountain region,is the largest producer of Ni and Cu in China,with mineralization being related to mafic and ultramafic magmatism.Previous studies have shown that the Longshou Mountain was combined with the Qilian Mountains before Neoproterozoic,and was separated from each other due to the opening of late Qilian oceanic basin in the Paleozoic.The relict Precambrian microcontinents of the Longshou Mountain and Qilian Mountain 展开更多
关键词 MAGMATISM NI-cu Jinchuan deposit
下载PDF
A Bayesian hierarchical model for the inference between metal grade with reduced variance:Case studies in porphyry Cu deposits
13
作者 Yufu Niu Mark Lindsay +2 位作者 Peter Coghill Richard Scalzo Lequn Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期304-314,共11页
Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,wi... Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options. 展开更多
关键词 Bayesian hierarchical model Porphyry cu deposit Ore sorting Metal grade Linear regression
原文传递
Trace element compositions of pyrite and stibnite:implications for the genesis of antimony mineralization in the Yangla Cu skarn deposit,Northwestern Yunnan,China
14
作者 Ping Pan Xinfu Wang +2 位作者 Bo Li Guo Tang Zuopeng Xiang 《Acta Geochimica》 EI CAS CSCD 2024年第3期535-554,共20页
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri... The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla. 展开更多
关键词 Trace elements PYRITE STIBNITE Substitution mechanisms Antimony mineralization Yangla cu skarn deposit
下载PDF
Genesis and metallogenic characteristic of Dongnan Cu–Mo deposit associated granitoids:LA-ICP-MS zircon U–Pb dating and isotope constraint from Zijinshan ore field in southeastern China
15
作者 Qifeng Xie Mingguo Zhai +3 位作者 Yuanfeng Cai Yunpeng Dong Hong Zhang Aifang Xiao 《Acta Geochimica》 EI CAS CSCD 2023年第2期332-345,共14页
The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The pe... The Dongnan Cu–Mo deposit,located in the southeast of the Zijinshan ore field(the largest porphyry–epithermal system in Southeast China),represents the complex magmatic and metallogenesis events in the region.The petrogenesis and metallogenesis of granitoids from the deposit are not determined,especially the interactions between ore-bearing(granodiorite porphyry)and barren samples(granodiorite and diorite).In the paper,the whole rock geochemical features shared a similar affinity to the middle-lower content and revealed that they derived from partial melting of the Cathaysian basement with the contribution of mantle materials,even represented that they generated in the plate subduction;LA-ICP-MS zircon U–Pb ages show that these granodiorites,granodioritic porphyry and diorite,were generated during 114–103 Ma.The ore-bearing samples mostly presented ε_(Hf)(t)of negative values(peak value is-4 to-3)with old two-stage Hf model ages(t_(DM)^(2))(peak value is 1.10–1.15 Ga),while the barren sample showed slightly negative ε_(Hf)(t)(peak value is-1 to 0)values with young t_(DM)^(2)(peak value is 1.00–1.05 Ga).The value of zircon Ce^(4+)/Ce^(3+)ratio mostly higher than 450 was first verified for the ore-bearing samples in the Dongnan Cu–Mo deposit,and the values of ore-bearing were found to be higher than those from the barren,which suggests that the ore-bearing formed in more oxidized parental magma with higher oxygen fugacity.Based on the geochemical characteristic of the element and isotope,we concluded that the Early Cretaceous multiphases magmatic activities,low melting temperature and low pressure of pluton,and high oxygen fugacity of zircon,were the favorable conditions for metallogenesis of Dongnan Cu–Mo deposit. 展开更多
关键词 Magmatism METALLOGENESIS Dongnan cu–Mo deposit Zijinshan ore field
下载PDF
滇西保山地块金厂河Fe-Cu-Pb-Zn矽卡岩型多金属矿床黑柱石成因及地质意义
16
作者 陆波德 刘学龙 +8 位作者 周云满 赵成峰 王基元 李方兰 李庆锐 王海 李守奎 曹振梁 周杰虎 《地质学报》 EI CAS CSCD 北大核心 2024年第4期1164-1182,共19页
黑柱石是一种矽卡岩型铅锌及铁矿床中少见的矿物,与铅锌矿体、磁铁矿体关系密切。为查明黑柱石成矿过程中与铅锌铁铜多金属成矿作用的关系,本文对金厂河Fe-Cu-Pb-Zn多金属矿床中的黑柱石产状、矿物共生组合、化学成分、分带性等开展了... 黑柱石是一种矽卡岩型铅锌及铁矿床中少见的矿物,与铅锌矿体、磁铁矿体关系密切。为查明黑柱石成矿过程中与铅锌铁铜多金属成矿作用的关系,本文对金厂河Fe-Cu-Pb-Zn多金属矿床中的黑柱石产状、矿物共生组合、化学成分、分带性等开展了研究。根据电子探针数据计算可得,金厂河矿区黑柱石的化学式为:Ca_(0.95-1.08)(Fe_(0.87-1.97)Mn_(0.08-0.36)Mg_(0.01-0.06))^(2+)_((1.89-2.03))(Fe_(0.82-1.04)Al_(0.01-0.03))^(3+)_((0.88-1.15))[Si_(1.94-2.08)O_(7)]O(OH)。结合矿物组合类型、产状、分带特征等,推测矿床内矽卡岩由内带逐渐向外带交代的趋势。金厂河矿区主要有3种矿物共生组合:黑柱石+磁铁矿组合,黑柱石+磁铁矿+黄铁矿+黄铜矿组合,黑柱石+方铅矿+闪锌矿+黄铜矿组合,分别对应三个不同的蚀变阶段:晚期矽卡岩阶段(代表组合Ⅰ),以石榴子石的分解为主,形成大量的黑柱石;退蚀变阶段(代表组合Ⅱ),以阳起石、黄铜矿、黄铁矿发育为主;石英-硫化物阶段(代表组合Ⅲ),以发育大量的方铅矿、闪锌矿为主,同时这一阶段内黑柱石分解,形成阳起石、方解石、磁铁矿等。此外,黑柱石的稀土元素配分模式与石榴子石的类似,一定程度上保留了石榴子石的稀土元素特征。研究认为:黑柱石是早期石榴子石退化分解的产物,矿床自内向外逐渐交代,形成了铅锌铜矿体中以锰质黑柱石为主,而磁铁矿体、铜矿体中以含锰黑柱石为主的分带特性。锰质黑柱石有利于铅锌矿的形成,而对于磁铁矿有贫化的影响,同时也可为矿区揭露中酸性岩体和深部找矿提供重要科学意义。 展开更多
关键词 电子探针 LA-ICP-MS原位微区 黑柱石 Fe-cu-Pb-Zn多金属矿 金厂河
下载PDF
超音速激光沉积Cu-Al_(2)O_(3)-石墨复合涂层微观结构及耐磨损性能
17
作者 孙启帆 林钟卫 +3 位作者 刘博 章钢 李波 姚建华 《表面技术》 EI CAS CSCD 北大核心 2024年第5期115-125,共11页
目的研究不同石墨含量对超音速激光沉积Cu-Al_(2)O_(3)-石墨复合涂层的微观组织、显微硬度、耐磨损性能的影响。方法利用扫描电子显微镜、能量色谱仪、维氏硬度计、激光共聚焦扫描显微系统、X射线衍射仪、摩擦磨损测试对复合涂层的微观... 目的研究不同石墨含量对超音速激光沉积Cu-Al_(2)O_(3)-石墨复合涂层的微观组织、显微硬度、耐磨损性能的影响。方法利用扫描电子显微镜、能量色谱仪、维氏硬度计、激光共聚焦扫描显微系统、X射线衍射仪、摩擦磨损测试对复合涂层的微观组织、显微硬度、耐磨损性能及磨损机制进行分析。结果随着原始粉末中镀铜石墨质量占比的增加,Cu-Al_(2)O_(3)-石墨复合涂层的沉积效率逐渐降低。基于Al_(2)O_(3)颗粒的原位喷丸效应及激光辐照的加热软化效应,复合涂层具有致密的微观组织,且复合涂层与基体界面结合良好。单一添加Al_(2)O_(3)颗粒可以将Cu涂层的硬度从108.19HV0.2提高至121.82HV0.2。随着石墨含量的增大,涂层的显微硬度逐渐降低,镀铜石墨在原始粉末中的质量分数从5%增至15%,Cu-Al_(2)O_(3)-石墨复合涂层的硬度从116.09HV0.2降至94.17HV0.2。添加石墨能够在复合涂层表面形成固体润滑层,降低复合涂层的摩擦因数,提升涂层的耐磨损性能。CuAlGr10复合涂层具有最优的耐磨损性能,磨损率为0.7×10^(−4)mm^(3)/(N·m)。此外,由于激光辐照促进了复合涂层内部颗粒间的界面结合,均匀分散在石墨润滑相中的Al_(2)O_(3)颗粒作为负载支撑和耐磨相,可进一步降低复合涂层的磨损率。结论Cu-Al_(2)O_(3)-石墨复合涂层优异的耐磨性能是润滑相石墨颗粒和硬质增强相Al_(2)O_(3)颗粒共同作用的结果,石墨的添加能够降低复合涂层的摩擦因数,提升涂层的耐磨损性能,但过量的石墨颗粒会对涂层产生割裂作用,导致增强相Al_(2)O_(3)颗粒脱离涂层,从而加剧涂层的磨损。 展开更多
关键词 超音速激光沉积 cu-Al_(2)O_(3)-石墨复合涂层 微观组织 显微硬度 耐磨损性能 磨损机制
下载PDF
Structure of Cu-Phthalocyanine Vacuum Deposited on Inclined Glass Substrates
18
作者 Masato Ohmukai Yasutaka Kato 《World Journal of Engineering and Technology》 2023年第4期770-774,共5页
Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum depo... Cu-phthalocyanine is widely studied as a hole-transport layer in organic electronic devices. Since Cu-phthalocyanine is a molecular solid, the crystal structure depends on a circumstance to a great extent. Vacuum deposited layers were known to consist of two consecutive layers. In this article, Cu-phthalocyanine was deposited on the glass substrate inclined at several angles. The thickness of the first layer was found to be dependent on the substrate angle. 展开更多
关键词 cu-Phthalocyanine Vacuum deposition Crystal Structure Inclined Substrate
下载PDF
Geochronology and Geochemistry of the Mamupu Cu-Au Polymetallic Deposit,Eastern Tibet:Implications for Eocene Cu Metallogenesis in the Yulong Porphyry Copper Belt 被引量:1
19
作者 ZHANG Xiaoxu LIN Bin +9 位作者 TANG Juxing HE Liang LIU Zhibo WANG Qin SHAO Rui DU Qiu SILANG Wangdui CIREN Ouzhu GUSANG Quzhen CIDAN Zhongga 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1221-1236,共16页
The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrit... The Mamupu skarn-type Cu-Au polymetallic deposit represents the first discovery of a medium deposit in the southern Yulong porphyry copper belt(YPCB),eastern Tibet.The Cu-Au mineralization mainly occurs as chalcopyrite in breccia,within the plate-like carbonate interlayer,being closely related to chloritization(e.g.,chlorite,magnetite and epidote)and skarnization(e.g.,diopside,tremolite and garnet).The ore-related quartz syenite porphyry(QSP)and granodiorite porphyry(GP)were emplaced at 40.1±0.2 Ma and 39.9±0.3 Ma,respectively.The QSP of Mamupu is an alkaline-rich intrusion,relatively enriched in LREE,LILE,depleted in HFSE,with no significant negative Eu and Ce anomalies,slightly high(^(87)Sr/^(86)Sr)i,lowε_(Nd)(t),uniform(^(206)Pb/^(204)Pb)i andε_(Hf)(t)values,which indicates that the porphyry magma may be caused by both the mixing of metasomatized EM II enriched mantle and thickened juvenile lower crust.The QSP in the Mamupu deposit shares a similar genesis of petrology to other ore-related porphyries within the YPCB.High oxygen fugacity and water content of the magmas are essential for the formation of porphyry and skarn Cu deposits.The QSP has similar high magmatic oxidation states and water content to the Yulong deposit,which indicates that the Mamupu has a high prospecting potential.Differences in the geological characteristics and scale of mineralization between the Mamupu and other YPCB deposits may be due to the different emplacement depths of ore-related intrusions,as well as differences in the surrounding rocks. 展开更多
关键词 skarn cu deposit GEOCHRONOLOGY GEOCHEMISTRY Mamupu Yulong porphyry copper belt Tibet
下载PDF
Porphyry Cu deposits linked to episodic growth of an underlying parental magma chamber 被引量:1
20
作者 Yuanchuan ZHENG Lu WANG +7 位作者 Chuandong XUE Bo XU Abdul GHAFFAR Zhusen YANG Yongjun LU Limin ZHOU William L.GRIFFIN Zengqian HOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第11期1807-1816,共10页
Saindak is one of the typical porphyry Cu deposits(PCDs)in the Chagai magmatic arc in Pakistan.Ore-forming porphyries at Saindak PCD are mainly composed of tonalite.Here,we use geochemistry of apatite enclosed in plag... Saindak is one of the typical porphyry Cu deposits(PCDs)in the Chagai magmatic arc in Pakistan.Ore-forming porphyries at Saindak PCD are mainly composed of tonalite.Here,we use geochemistry of apatite enclosed in plagioclase phenocrysts from the ore-forming tonalite to constrain the releasing and recharging processes of S and Cl in the underlying parental magma chamber during PCD mineralization.Although apatite inclusions have homogeneous intra-grain S and Cl compositions,there is significant inter-grain S and Cl variations in apatite inclusions located from core to rim in the hosting plagioclase.Such inter-grain S and Cl variation in apatites are coupled with the core-to-rim trends of An,FeO and Mg contents of the hosting plagioclase phenocryst.It indicates that the Saindak PCD likely formed by episodic injection of primitive magmas during the growth of an underlying magma chamber,rather than by one major injection or by addition of mafic melt derived from different source region.Each primitive melt injection introduced essential ore-forming materials such as S and Cl,which were rapidly and effectively released to the coexisting fluids,causing mineralization.Once primitive melt injection stops,signaling the end of growth of underlying magma chamber,mineralization will cease quickly although the hydrothermal system can still survive for a long time.However,the later released fluids are relatively depleted in ore-forming materials,and thus have lower capability to generate mineralization.Accordingly,predominant porphyry-type mineralizations occurred during the growth rather than waning stage of a magmatic system. 展开更多
关键词 APATITE PLAGIOCLASE Episodic injection Parental magma chamber Porphyry cu deposit
原文传递
上一页 1 2 122 下一页 到第
使用帮助 返回顶部