The deposition of a Cu seed layer film is investigated by supercritical fluid deposition (SCFD) using H2 as a reducing agent for Bis(2,2,6,6-tetramethyl-3,5- heptanedionato) copper in supercritical CO2 (scCO2). ...The deposition of a Cu seed layer film is investigated by supercritical fluid deposition (SCFD) using H2 as a reducing agent for Bis(2,2,6,6-tetramethyl-3,5- heptanedionato) copper in supercritical CO2 (scCO2). The effects of deposition temperature, precursor, and H2 concentration are investigated to optimize Cu deposition. Continuous metallic Cu films are deposited on Ru substrates at 190 ℃ when a 0.002 mol/L Cu precursor is introduced with 0.75 mol/L H2. A Cu precursor concentration higher than 0.002 mol/L is found to have negative effects on the surface qualities of Cu films. For a H2 concentration above 0.56 mol/L, the root-mean-square (RMS) roughness of a Cu film decreases as the H2 concentration increases. Finally, a 20-nm thick Cu film with a smooth surface, which is required as a seed layer in advanced interconnects, is successfully deposited at a high H2 concentration (0.75 tool/L).展开更多
Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is...Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries.展开更多
Electromigration in Cu has been extensively investigated as the root cause of typical breakdown failure in Cu interconnects. In this study Cu nanowires connected to Au electrodes are fabricated and observed using in s...Electromigration in Cu has been extensively investigated as the root cause of typical breakdown failure in Cu interconnects. In this study Cu nanowires connected to Au electrodes are fabricated and observed using in situ transmission electron microscopy to investigate the electro- and thermo-migration processes that are induced by direct current sweeps. We observe the dynamic evolution of different mass transport mechanisms. A current density on the order of 106 A/cm^2 and a temperature of approximately 400 ℃ are sufficient to induce electro- and thermo-migration, respectively. Observations of the migration processes activated by increasing temperatures indicate that the migration direction of Cu atoms is dependent on the net force from the electric field and electron wind. This work is expected to support future design efforts to improve the robustness of Cu interconnects.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50901086 and 51072118)the Shanghai Shuguang Project,China (Grant No. 09SG46)+2 种基金the Science Foundation for the Excellent Youth Scholars of Shanghai Municipal Education Commission,China (Grant No. slg10032)the Qianjiang Project of Zhejiang Province,China (Grant No. 2010R10047)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The deposition of a Cu seed layer film is investigated by supercritical fluid deposition (SCFD) using H2 as a reducing agent for Bis(2,2,6,6-tetramethyl-3,5- heptanedionato) copper in supercritical CO2 (scCO2). The effects of deposition temperature, precursor, and H2 concentration are investigated to optimize Cu deposition. Continuous metallic Cu films are deposited on Ru substrates at 190 ℃ when a 0.002 mol/L Cu precursor is introduced with 0.75 mol/L H2. A Cu precursor concentration higher than 0.002 mol/L is found to have negative effects on the surface qualities of Cu films. For a H2 concentration above 0.56 mol/L, the root-mean-square (RMS) roughness of a Cu film decreases as the H2 concentration increases. Finally, a 20-nm thick Cu film with a smooth surface, which is required as a seed layer in advanced interconnects, is successfully deposited at a high H2 concentration (0.75 tool/L).
文摘Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries.
文摘Electromigration in Cu has been extensively investigated as the root cause of typical breakdown failure in Cu interconnects. In this study Cu nanowires connected to Au electrodes are fabricated and observed using in situ transmission electron microscopy to investigate the electro- and thermo-migration processes that are induced by direct current sweeps. We observe the dynamic evolution of different mass transport mechanisms. A current density on the order of 106 A/cm^2 and a temperature of approximately 400 ℃ are sufficient to induce electro- and thermo-migration, respectively. Observations of the migration processes activated by increasing temperatures indicate that the migration direction of Cu atoms is dependent on the net force from the electric field and electron wind. This work is expected to support future design efforts to improve the robustness of Cu interconnects.