针对Cu/Al管连接,提出磁脉冲-半固态复合辅助钎焊新工艺。基于LS-DYNA对钎焊过程进行多物理场仿真分析,研究不同电压下半固态钎料流变规律及管壁受力情况。采用Zn-15Al钎料进行钎焊试验,考察了接头的力学性能及显微组织。结果表明:当二...针对Cu/Al管连接,提出磁脉冲-半固态复合辅助钎焊新工艺。基于LS-DYNA对钎焊过程进行多物理场仿真分析,研究不同电压下半固态钎料流变规律及管壁受力情况。采用Zn-15Al钎料进行钎焊试验,考察了接头的力学性能及显微组织。结果表明:当二次放电电压为7 k V时,钎料与母材实现了良好的冶金结合,接头铝侧区域形成α-Al和金属间化合物CuZn5,钎料层则出现α-Al、富锌相以及CuZn5,铜侧区域形成大约4μm的扩散层、锯齿状三元相Al4.2Cu3.2Zn0. 7以及α-Al和花状CuZn5。拉伸测试结果表明接头强度高于Al母材,磁脉冲-半固态复合辅助钎焊新工艺能实现Cu/Al管的有效连接。展开更多
The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied b...The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.展开更多
To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutect...To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutectic filler.The microstructure and mechanical properties of filler alloys and Cu/Al joints were investigated.The result indicated that the Al−Si−Ni−Cu filler alloys mainly consisted of Al(s,s),Al_(2)(Cu,Ni)and Si(s,s).The Al−10Si−2Ni−6Cu filler alloy exhibited relatively low solidus(521℃)and liquidus(577℃)temperature,good tensile strength(305.8 MPa)and fracture elongation(8.5%).The corresponding Cu/Al joint brazed using Al−10Si−2Ni−6Cu filler was mainly composed of Al_(8)(Mn,Fe)_(2)Si,Al_(2)(Cu,Ni)3,Al(Cu,Ni),Al_(2)(Cu,Ni)and Al(s,s),yielding a shear strength of(90.3±10.7)MPa.The joint strength was further improved to(94.6±2.5)MPa when the joint was brazed using the Al−10Si−2Ni−6Cu−0.2Er−0.2Zr filler alloy.Consequently,the(Cu,Ni,Zr,Er)-modified Al−Si filler alloy was suitable for obtaining high-quality Cu/Al brazed joints.展开更多
文摘针对Cu/Al管连接,提出磁脉冲-半固态复合辅助钎焊新工艺。基于LS-DYNA对钎焊过程进行多物理场仿真分析,研究不同电压下半固态钎料流变规律及管壁受力情况。采用Zn-15Al钎料进行钎焊试验,考察了接头的力学性能及显微组织。结果表明:当二次放电电压为7 k V时,钎料与母材实现了良好的冶金结合,接头铝侧区域形成α-Al和金属间化合物CuZn5,钎料层则出现α-Al、富锌相以及CuZn5,铜侧区域形成大约4μm的扩散层、锯齿状三元相Al4.2Cu3.2Zn0. 7以及α-Al和花状CuZn5。拉伸测试结果表明接头强度高于Al母材,磁脉冲-半固态复合辅助钎焊新工艺能实现Cu/Al管的有效连接。
基金Project (2009GJC20040) supported by the Scientist and Technician Serve the Enterprise,MOST,China
文摘The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.
基金the financial support from the Primary Research&Development Plan of Zhejiang Province,China(No.2021C01178)the National MCF Energy R&D Program,China(No.2019YFE03100400)+1 种基金the National Natural Science Foundation of China(Nos.51705457,51975530,52005445,52175368)the Natural Science Foundation of Zhejiang Province,China(Nos.LQ21E050015,LQ21E050018).
文摘To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutectic filler.The microstructure and mechanical properties of filler alloys and Cu/Al joints were investigated.The result indicated that the Al−Si−Ni−Cu filler alloys mainly consisted of Al(s,s),Al_(2)(Cu,Ni)and Si(s,s).The Al−10Si−2Ni−6Cu filler alloy exhibited relatively low solidus(521℃)and liquidus(577℃)temperature,good tensile strength(305.8 MPa)and fracture elongation(8.5%).The corresponding Cu/Al joint brazed using Al−10Si−2Ni−6Cu filler was mainly composed of Al_(8)(Mn,Fe)_(2)Si,Al_(2)(Cu,Ni)3,Al(Cu,Ni),Al_(2)(Cu,Ni)and Al(s,s),yielding a shear strength of(90.3±10.7)MPa.The joint strength was further improved to(94.6±2.5)MPa when the joint was brazed using the Al−10Si−2Ni−6Cu−0.2Er−0.2Zr filler alloy.Consequently,the(Cu,Ni,Zr,Er)-modified Al−Si filler alloy was suitable for obtaining high-quality Cu/Al brazed joints.