期刊文献+
共找到2,799篇文章
< 1 2 140 >
每页显示 20 50 100
Protective Graphite Coating for Two-Dimensional Carbon/Carbon Composites
1
作者 Wei Shi Zhengyi Li +3 位作者 Xiaobing Xu Yingshui Yu Xiaofei Ding Heng Ju 《Fluid Dynamics & Materials Processing》 EI 2024年第1期97-108,共12页
Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea... Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites. 展开更多
关键词 carbon/carbon composites graphite coating MICROSTRUCTURE erosion resistance
下载PDF
Recent Advances in Interface Modification of Cu/graphite Composites and Layered Ternary Carbides of Modified Layer Candidate
2
作者 WEI Hongming LI Mingchao +4 位作者 LI Xiaoya ZHAN Wenyi LI Feiyang DAI Yanzhang ZOU Jianpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1061-1072,共12页
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo... We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites. 展开更多
关键词 cu/graphite composites interfacial bonding surface modification WETTABILITY layered ternary carbides
下载PDF
Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors
3
作者 Chun Li Zihan Song +6 位作者 Minliang Liu Enrico Lepre Markus Antonietti Junwu Zhu Jian Liu Yongsheng Fu Nieves López-Salas 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期295-303,共9页
Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist... Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode. 展开更多
关键词 ANODE graphitic nanodomains N-doped carbons sodium-ion capacitor TEMPLATE
下载PDF
Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis
4
作者 Zhihao Zheng Mingzhuang Xie +5 位作者 Guoqing Yu Zegang Wu Jingjing Zhong Yi Wang Hongliang Zhao Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2466-2475,共10页
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th... Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC. 展开更多
关键词 graphitized spent carbon cathode hazardous solid waste flotation acid leaching lithium-ion batteries
下载PDF
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors
5
作者 Ge Chu Chaohui Wang +2 位作者 Zhewei Yang Lin Qin Xin Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期395-404,共10页
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro... The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)). 展开更多
关键词 metal-organic framework porous graphitic carbon optimized plateau capacity kinetic analysis lithium-ion capacitor
下载PDF
Hybrid 2D/3D Graphitic Carbon Nitride-Based High-Temperature Position-Sensitive Detector
6
作者 Xuexia Chen Dongwen Yang +6 位作者 Xun Yang Qing Lou Zhiyu Liu Yancheng Chen Chaofan Lv Lin Dong Chongxin Shan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期275-283,共9页
Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PS... Ultraviolet position-sensitive detectors(PSDs)are expected to undergo harsh environments,such as high temperatures,for a wide variety of applications in military,civilian,and aerospace.However,no report on relevant PSDs operating at high temperatures can be found up to now.Herein,we design a new 2D/3D graphitic carbon nitride(g-C_(3)N_(4))/gallium nitride(GaN)hybrid heterojunction to construct the ultraviolet high-temperature-resistant PSD.The g-C_(3)N_(4)/GaN PSD exhibits a high position sensitivity of 355 mV mm^(-1),a rise/fall response time of 1.7/2.3 ms,and a nonlinearity of 0.5%at room temperature.The ultralow formation energy of-0.917 eV atom^(-1)has been obtained via the thermodynamic phase stability calculations,which endows g-C_(3)N_(4)with robust stability against heat.By merits of the strong built-in electric field of the 2D/3D hybrid heterojunction and robust thermo-stability of g-C_(3)N_(4),the g-C_(3)N_(4)/GaN PSD delivers an excellent position sensitivity and angle detection nonlinearity of 315 mV mm^(-1)and 1.4%,respectively,with high repeatability at a high temperature up to 700 K,outperforming most of the other counterparts and even commercial silicon-based devices.This work unveils the high-temperature PSD,and pioneers a new path to constructing g-C_(3)N_(4)-based harsh-environment-tolerant optoelectronic devices. 展开更多
关键词 graphitic carbon nitride high-temperature stability lateral photovoltaic effect position-sensitive detectors two-dimensional materials
下载PDF
Cu,N codoped carbon nanosheets encapsulating ultrasmall Cu nanoparticles for enhancing selective 1,2-propanediol oxidation
7
作者 Yonghai Feng Min Yu +2 位作者 Minjia Meng Lei Liu Dewei Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期27-35,共9页
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited... In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling. 展开更多
关键词 Selective oxidation Copper and nitrogen doped carbon 1 2-PROPANEDIOL Ultrasmall cu nanoparticles Lactic acid
下载PDF
Tailoring carbon chains for repairing graphite from spent lithium-ion battery toward closed-circuit recycling 被引量:4
8
作者 Chenxing Yi Peng Ge +2 位作者 Xiqing Wu Wei Sun Yue Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期97-107,I0004,共12页
Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suf... Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suffers from the lack of effective repair methods. Considering the existing defects, a series of Cchain length carbons have been successfully introduced to repair spent graphite. Obviously, with the evolution of carbon resources, the thickness and pores of the coating layer were tailored with the functional groups. Benefitting from the increased active sites and created fold structure, their coulombic efficiency is obviously restored from 14% to 86.89%, while the stable capacity is kept at approximately 384.9 mAh gafter 100 cycles. Moreover, their excellent rate properties are kept about approximately 200 mAh gat2 C, meeting the standard of commercial materials. Supported by the detailed kinetic behaviors, the enhanced rate is mainly dominated by pseudocapacitive behaviors, accompanied by deepening redox reactions. Meanwhile, the cost of the proposed approach for recycling spent graphite is 894.87 $ t^(-1),and the recycling profit for regenerating graphite is approximately 7000 $ t^(-1). Given this, this work is anticipated to shed light on the closed-circuit recycling of spent graphite and offer significant strategies to repair graphite. 展开更多
关键词 Spent lithium-ion battery graphite carbon coating REGENERATION Kinetic behaviors
下载PDF
Single-Wall Carbon Nanotube Growth from Graphite Layers-a Tight Binding Molecular Dynamics Simulation
9
作者 YuntuanFANG MinZHU YongshunWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期637-638,共2页
The growth of single-wall carbon nanotube from graphite layers is studied by tight binding molecular dynamics simulation. Given temperature of 2500 K or 3500 K and an interval of 0.25 nm for the two layers of graphite... The growth of single-wall carbon nanotube from graphite layers is studied by tight binding molecular dynamics simulation. Given temperature of 2500 K or 3500 K and an interval of 0.25 nm for the two layers of graphite, a single-wall carbon nanotube with a zigzag shell will be produced. On the other conditions the carbon nanotube cannot grow or grows with too many defects. All carbon nanotube ends have pentagons which play an important role during the tube ends closing. 展开更多
关键词 Single-wall carbon nanotube graphite Tight binding molecular simulation
下载PDF
TEPA改性Cu-BTC@SiO_(2)复合气凝胶制备及其捕集CO_(2)特性研究
10
作者 周刚 杨思奥 +4 位作者 王凯丽 董晓素 柳茹林 孙彪 徐翠翠 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第7期235-247,共13页
在“碳达峰、碳中和”这一国家重大战略背景下,CO_(2)捕集已经成为当前重大科技发展方向。固体吸附剂吸附法在CO_(2)的捕集过程中应用广泛,其中SiO_(2)气凝胶具有成本低、合成方法灵活、分离效率高、表面易修饰等优点。然而,SiO_(2)气... 在“碳达峰、碳中和”这一国家重大战略背景下,CO_(2)捕集已经成为当前重大科技发展方向。固体吸附剂吸附法在CO_(2)的捕集过程中应用广泛,其中SiO_(2)气凝胶具有成本低、合成方法灵活、分离效率高、表面易修饰等优点。然而,SiO_(2)气凝胶材料也存在CO_(2)/N_(2)吸附选择性低,CO_(2)吸附容量有待继续提高等缺陷。为解决上述问题,制备了一种Cu-BTC@SiO_(2)复合气凝胶CO_(2)吸附材料。首先,利用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对材料表面化学和孔隙结构进行了系统表征。然后,通过二氧化碳吸附测试对其CO_(2)吸附量、选择性吸附、循环吸附进行了研究。最后,采用理论与试验研究结合的方法,对吸附剂的CO_(2)吸附动力学进行了研究。结果表明:Cu-BTC与SiO_(2)气凝胶具有结构协同作用,与Cu-BTC复合后的SiO_(2)气凝胶不会改变材料的Si-O-Si骨架结构,同时可以保持Cu-BTC的晶体结构不受到损坏。复合材料具有726.431 m^(2)/g的高比表面积,570.781 m^(2)/g的微孔比表面积和0.184 cm^(3)/g的高微孔体积。负载四乙烯五胺(TEPA)后CO_(2)吸附量高达3.20 mmol/g,CO_(2)/N_(2)选择性吸附系数为40.8,循环10次CO_(2)吸附循环,吸附容量仅下降14%,提高了SiO_(2)气凝胶材料的CO_(2)吸附容量和吸附选择性。Avrami分数动力学模型对吸附试验结果拟合相关系数为0.99,且Avrami指数nA为1.9表明吸附剂对CO_(2)的吸附是非均质的多层吸附,既有物理吸附又有化学吸附,且以物理吸附为主。利用具有丰富微孔结构的金属有机骨架材料Cu-BTC与SiO_(2)气凝胶进行复合,使复合材料具有分级微/介孔结构,通过增强分子间作用力(范德华力)来增强材料对CO_(2)的物理吸附;使用TEPA对材料进行浸渍改性,利用有机胺和酸性气体之间的酸碱相互作用来增强材料对CO_(2)的化学吸附。 展开更多
关键词 SiO_(2)气凝胶 cu-BTC CO_(2)吸附 吸附动力学 碳中和
下载PDF
Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries 被引量:3
11
作者 Yihua Tang Jingjing Chen +2 位作者 Zhiyong Mao Christina Roth Dajian Wang 《Carbon Energy》 SCIE CSCD 2023年第2期236-249,共14页
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial ... N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency(ICE).In this study,high N-doped and low graphitic-N carbons(LGNCs)with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride(g-C_(3)N_(4)).In brief,more than 14.5 at%of N from g-C_(3)N_(4)(55.1 at%N)was retained by reacting graphitic-N with lithium,which was subsequently removed.As graphitic-N is largely responsible for the irreversible capacity,the anode's performance was significantly increased.Compared to general N-doped carbons with high graphitic-N proportion(>50%)and low N content(<15 at%),LGNCs delivered a low proportion of 10.8%-17.2% within the high N-doping content of 14.5-42.7 at%,leading to an enhanced specific capacity of 1499.9mAh g^(-1) at an ICE of 93.7% for the optimal sample of LGNC(4:1).This study provides a facile strategy to control the N content and speciation,achieving both high Li+storage capacity and high ICE,and thus promoting research and application of N-doped carbon materials. 展开更多
关键词 DENITRIFICATION graphitic carbon nitride graphitic-N lithium-ion batteries N-doped carbon
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries 被引量:2
12
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes POLYMERS graphitic carbon nitride nanosheets Composites Room temperature All-solid-state battery
下载PDF
Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent 被引量:2
13
作者 Qinqin Cai Hao Jia +5 位作者 Guanjie Li Zhangyating Xie Xintao Zhou Zekai Ma Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期593-602,I0013,共11页
Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with ... Although high salt concentration electrolyte(HCE)can construct effective Li F-rich interphase film and solve the interphasial instability issue of graphite anode,its high cost,high viscosity and poor wettability with electrode materials limit its large-scale application.Generally,localized high concentration electrolyte(LHCE)is obtained by introducing an electrochemically inert diluent into HCE to avoid the above-mentioned problems while maintaining the high interphasial stability of HCE with graphite anode.Unlike traditional inert diluents,1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluropropyl ether(TTE)with electrochemical activity is introduced into propylene carbonate(PC)-based HCE to obtain LHCE-2(1 M LiPF_(6),PC:DMC:TTE=1:1:6.1)herein.Experimental and theoretical simulation results show that TTE participates in the oxidation decomposition and film-forming reaction at the NCM622 cathode surface,conducting a cathode electrolyte interphase(CEI)rich in organic fluorides with excellent electron insulation ability,high structural stability and low interphasial impedance.Thanks to the outstanding interphasial properties induced by LHCE-2,the graphite||NMC622 pouch cell reaches a capacity retention of 80%after 500 cycles at 1 C under room temperature.While at sub-zero temperatures,the capacity released by the cell with LHCE-2 electrolyte is significantly higher than that of HCE and conventional EC-based electrolytes.Meanwhile,the LHCE-2 electrolyte inherits the advantages of TTE flame-resistant,thus improving the safety of the battery. 展开更多
关键词 Lithium-ion batteries Propylene carbonate Localized high-concentration electrolyte Non-Inert diluent graphite||NMC622 pouch cells
下载PDF
Carbon isotopes of graphite:Implications on fluid history 被引量:26
14
作者 F.J.Luque E.Crespo-Feo +1 位作者 J.F.Barrenechea L.Ortega 《Geoscience Frontiers》 SCIE CAS 2012年第2期197-207,共11页
Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of m... Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation. 展开更多
关键词 graphite carbon isotopes CRUST C-O-H fluids
下载PDF
Self-monitoring Application of Asphalt Concrete Containing Graphite and Carbon Fibers 被引量:5
15
作者 LIU Xiaoming WU Shaopeng +1 位作者 LI Ning GAO Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期268-271,共4页
The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas... The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa. 展开更多
关键词 asphalt concrete graphite carbon fibers SELF-MONITORING PIEZORESISTIVITY
下载PDF
静电纺丝法制备SnSbCuFeZn高熵合金/碳纳米纤维复合负极材料 被引量:1
16
作者 辛玉 潘石 +2 位作者 聂淑晴 缪畅 肖围 《矿冶工程》 CAS 北大核心 2024年第4期61-66,共6页
采用静电纺丝技术,结合煅烧工艺,将SnSbCuFeZn高熵合金纳米颗粒均匀地锚定在导电互联的碳纳米纤维中,成功制备了SnSbCuFeZn@CNFs锂离子电池复合负极材料。结果表明,煅烧温度对材料的物相组成和形貌特征有重要影响,且直接影响SnSbCuFeZn... 采用静电纺丝技术,结合煅烧工艺,将SnSbCuFeZn高熵合金纳米颗粒均匀地锚定在导电互联的碳纳米纤维中,成功制备了SnSbCuFeZn@CNFs锂离子电池复合负极材料。结果表明,煅烧温度对材料的物相组成和形貌特征有重要影响,且直接影响SnSbCuFeZn高熵合金纳米颗粒的晶相、尺寸和分布,决定SnSbCuFeZn@CNFs电极的电化学性能。其中SnSbCuFeZn@CNFs-900电极展现出优良综合性能:0.1 A/g时,初始放电比容量达1232.8 mA/g,循环200次后可逆放电比容量保持在786.0 mA/g;1.0 A/g时,循环500次后放电比容量仍有433.8 mA/g;2.0 mV/s扫描速度下,赝电容贡献率高达93.37%。 展开更多
关键词 静电纺丝法 SnSbcuFeZn高熵合金 碳纳米纤维 负极材料 锂离子电池
下载PDF
CuS/CQDs/g-C_(3)N_(4)复合材料的合成及光催化性能
17
作者 于巧玲 刘成宝 +5 位作者 金涛 陈丰 钱君超 邱永斌 孟宪荣 陈志刚 《材料导报》 EI CAS CSCD 北大核心 2024年第11期41-47,共7页
本工作以三水合硝酸铜(Cu(NO_(3))_(2)·3H_(2)O)、硫脲(CH_(4)N_(2)S)和柠檬汁为原料,基于水热法获得碳量子点(Carbon quantum dots,CQDs),采用超声震荡法成功合成了CuS/CQDs/g-C_(3)N_(4)三相复合光催化材料,构建了p-n型异质结。... 本工作以三水合硝酸铜(Cu(NO_(3))_(2)·3H_(2)O)、硫脲(CH_(4)N_(2)S)和柠檬汁为原料,基于水热法获得碳量子点(Carbon quantum dots,CQDs),采用超声震荡法成功合成了CuS/CQDs/g-C_(3)N_(4)三相复合光催化材料,构建了p-n型异质结。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)、氮气吸附-脱附测试(BET)和紫外-可见光漫反射光谱(UV-Vis DRS)等方法对材料的晶体结构、微观形貌和孔结构进行了详细表征。结果表明:三相复合材料界面结构构建良好,纯度高,各相分布均匀。光催化降解实验中,当CuS的含量为10%(质量分数)时,CuS/CQDs/g-C_(3)N_(4)复合材料的光催化降解效果达到最佳(72.1%)。复合材料在经过四次循环降解RhB后,其光催化降解效率仍然保持在65.2%。光催化实验结果表明,·O_(2)^(-)自由基是光催化降解产生的主要因素,h^(+)自由基的作用次之。 展开更多
关键词 石墨相氮化碳 碳量子点 过渡金属硫化物 异质结 光催化性能
下载PDF
Progress in electrolyte and interface of hard carbon and graphite anode for sodiumion battery 被引量:11
18
作者 Qi Liu Rigan Xu +5 位作者 Daobin Mu Guoqiang Tan Hongcai Gao Ning Li Renjie Chen Feng Wu 《Carbon Energy》 SCIE CAS 2022年第3期458-479,共22页
It is essential to replace lithium-ion batteries(LIBs)from the perspective of the Earth's resources and the sustainable development of mankind.Sodium-ion batteries(SIBs)are important candidates due to their low pr... It is essential to replace lithium-ion batteries(LIBs)from the perspective of the Earth's resources and the sustainable development of mankind.Sodium-ion batteries(SIBs)are important candidates due to their low price and abundant storage capacity.Hard carbon(HC)and graphite have important applications in anode materials of SIBs.In this review,the research progress in electrolyte and interface between HC and graphite anode for SIBs is summarized.The properties and performance of three types of widely used electrolytes(carbo nate ester,ether,and ionic liquid)with additives,as well as the formation of solid electrolyte interface(SEI),which are crucial to the reversible capacity and rate capability of HC anodes,are also discussed.In this review,the co-intercalation performance and mechanism of solvation Na+into graphite are summarized.Besides,the faced challenges and existing problems in this field are also succinctly highlighted. 展开更多
关键词 ELECTROLYTE graphite hard carbon SEI sodium-ion battery
下载PDF
Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability 被引量:6
19
作者 Zheng Li Guizhou Gu +2 位作者 Shaozheng Hu Xiong Zou Guang Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1178-1186,共9页
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor... Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance. 展开更多
关键词 graphitic carbon nitride Nitrogen photofixation CO-DOPING PHOTOCATALYSIS Plasma treatment
下载PDF
Sustainable catalytic graphitization of biomass to graphitic porous carbon by constructing permeation network with organic ligands
20
作者 Pengfei Liu Wenqiao Du +2 位作者 Xiangjing Liu Long Zhang Zhimin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期259-270,共12页
Common strategies for catalytic graphitization of biochar into graphitic porous carbon(GPC)still face great challenges,such as the realization of simple procedures,energy conservation,and green processes.Controlling o... Common strategies for catalytic graphitization of biochar into graphitic porous carbon(GPC)still face great challenges,such as the realization of simple procedures,energy conservation,and green processes.Controlling over the graphitization degree and pore structure of biochar is the key to its structural diversification.Herein,a clean and energy-efficient method is developed to synthesize adjustable graphitic degree and structure porosity GPC from rice husk-based carbon(RHC)at a relatively low temperature of 800–1000°C with environment-benign organometallic catalyst ethylenediaminetetraacetic acid ferric sodium salt(EDTA-iron)and the recovery ratio of catalyst is as high as 97%.The formed by the organic ligands of EDTA-iron facilitates the etching of RHC surface and pore by iron,resulting in highly graphitized and developed porous GPCs.The pore structure and graphitization degree of GPCs can be adjusted by altering the catalyst loading,temperature,and holding time.The catalyst EDTA-iron with a lower concentration mainly plays the role of etching,which promotes the formation of porous carbon with larger surface area(SBET=1187.2 m^(2)·g^(-1)).The catalyst with higher concentration mainly plays the role of catalyzing graphitization and promotes the obtaining of graphitic carbon with high graphitization degree(ID/IG=0.19).The mechanism of EDTA-iron catalyzed graphitization of RHC is explored by the comprehensive analysis of BET,XRD,Raman,TEM and TGA.This research not only provides an efficient method for the preparation of high-quality biomass-based graphite carbon,but also provides a feasible method for the preparation of biomass-based porous carbon. 展开更多
关键词 Catalytic graphitization EDTA-iron Rice husk Porous carbon graphite
下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部