BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in ...BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties.METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024.They were randomly assigned to three groups(n=20 each):Graphene nanocomposite material suction group(Group A),ordinary filter suction group(Group B),and no air suction device group(Group C).The air quality and air colony count in the clinic rooms were assessed before,during,and after the procedure.Additionally,bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B.RESULTS Before ultrasonic cleaning,no significant differences in air quality PM2.5 and colony counts were observed among the three groups.However,significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment.Additionally,the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B(P=0.000 and P=0.000,respectively).CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution.展开更多
The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2 O nanocomposites usi...The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2 O nanocomposites using graphene oxide-Cu O as a precursor. Remarkably, the different nanocomposites could be formed just by varying the reaction temperature and time. This work provides a feasible route for the preparation of graphene-based nanocomposites with various constituents.展开更多
In modern physics and fabrication technology,simulation of projectile and target collision is vital to improve design in some critical applications,like;bulletproofing and medical applications.Graphene,the most promin...In modern physics and fabrication technology,simulation of projectile and target collision is vital to improve design in some critical applications,like;bulletproofing and medical applications.Graphene,the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness.Moreover,polydimethylsiloxane(PDMS)is one of the most important elastomeric materials with a high extensive application area,ranging from medical,fabric,and interface material.In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites.To this aim,extensive molecular dynamic simulations were carried out to identify the penetration of bullet through the graphene and PDMS composite structures.In this paper,we simulate the impact of a diamond bullet with different velocities on the composites made of single-or bi-layer graphene placed in different positions of PDMS polymers.The underlying mechanism concerning how the PDMS improves the resistance of graphene against impact loading is discussed.We discuss that with the same content of graphene,placing the graphene in between the PDMS result in enhanced bullet resistance.This work comparatively examines the enhancement in design of polymer nanocomposites to improve their bulletproofing response and the obtained results may serve as valuable guide for future experimental and theoretical studies.展开更多
This study reports on the novel and simple green method involving the use of apple (Malus domestica) and tomato (Solanum lycopersicum) extracts in the synthesis of electroactive layers of silver nanoparticles|graphene...This study reports on the novel and simple green method involving the use of apple (Malus domestica) and tomato (Solanum lycopersicum) extracts in the synthesis of electroactive layers of silver nanoparticles|graphene oxide (AgNPs|GO) and zinc oxide nanoparticles|graphene oxide (ZnONPs|GO). The surface morphology of the green synthesized nanocomposites was studied using High-Resolution Transmission Electron Microscopy (HRTEM), High-Resolution Scanning Electron Microscopy (HRSEM) while the elemental analysis was studied using Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy and X-Ray diffraction (XRD) and their optical properties were further characterised using Ultraviolet Spectroscopy (UV-vis). The electrochemical studies of these nanocomposites were achieved using cyclic voltammetry (CV) where an increase in electron conductivity of the AgNPs|GO and ZnONPs|GO nanocomposite was observed. Comparatively, the silver nanoparticulate-based platforms were observed to have superior electrochemical properties as opposed to the zinc oxide-based platform. The observed electrochemical activities of the synthesized nanocomposites are a good indication of their suitability as electroactive platforms towards the development of electrochemical sensors. Electrochemical sensors are popular in the Electrochemistry field because they may be developed using different methods in order to suit their intended analytes. As such, the synthesis of a variety of electrochemical platforms provides researchers with a vast range of options to select from for the detection of analytes.展开更多
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall...Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.展开更多
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica...Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.展开更多
In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy throu...In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed.展开更多
Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphe...Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites.展开更多
We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(...We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.展开更多
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag...An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.展开更多
Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nano...Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with im- proved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer na-nocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, elec-trodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.展开更多
Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were r...Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.展开更多
The corrosion resistance and wear resistance of metallic biomaterials are critically important for orthopedic hard-tissue replacement applications because the lack of such properties not only adversely affects their m...The corrosion resistance and wear resistance of metallic biomaterials are critically important for orthopedic hard-tissue replacement applications because the lack of such properties not only adversely affects their mechanical integrity but also allows the release of wear debris into the human body.In this study,the potential of zirconium(Zr)as an alloying element and graphene nanoplatelets(GNPs)as a nano-reinforcement material were investigated in relation to improving the tribological performance of pure magnesium(Mg).The GNPs-reinforced Mg matrix nanocomposites(MNCs)were fabricated using powder metallurgy.Results indicate that additions of 0.5 wt.%Zr and0.1 wt.%GNPs to Mg matrices significantly improved the wear resistance by 89%and 92%at 200μN load,60%and 80%at 100μN load,and 94%and 93%at 50μN load,respectively,as compared to the wear resistance of pure Mg.The wear depth and coefficient of friction of the MNC containing 0.5 wt.%Zr and 0.1 wt.%GNPs(Mg0.5 Zr0.1 GNPs MNC)were considerably reduced as compared to pure Mg and Mg0.5 Zr.Our results demonstrate that the Mg0.5 Zr0.1 GNPs MNC is promising for orthopedic applications in relation to its excellent tribological performance.展开更多
Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of pol...Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of polyethylene(PE) nanocomposites. By constructing the pillared graphene model and CNTs/graphene model, the effect of the structure, arrangement and dispersion of hybrid fillers on the tensile mechanical properties of PE nanocomposites was studied. The results show that the pillared graphene/PE nanocomposites exhibit higher Young’s modulus, tensile strength and elongation at break than non-covalent connected CNTs/graphene/PE nanocomposites. The pull-out simulations show that pillared graphene by CNTs has both large interfacial load and long displacement due to the mixed modes of shear separation and normal separation. Additionally, pillared graphene can not only inhibit agglomeration but also form a compact effective thickness(stiff layer), consistent with the adsorption behavior and improved interfacial energy between pillared graphene and PE matrix.展开更多
The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-b...The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-based polymer nanocomposites is an important addition in the area of nanoscience and technology. In this study the influence of graphene nanoparticles (GNP) in concentrations from 2.0 to 10.0 phr on the dielectric (dielectric permittivity, dielectric loss angle tangent) and microwave (reflection coefficient, attenuation coefficient, shielding effectiveness) properties of nanocomposites on the basis of natural rubber has been investigated in the wide frequency range (1 - 12 GHz). The results achieved allow recommending graphene as a filler for natural rubber based composites to afford specific dielectric and microwave properties, especially when their loading with the much more expensive carbon nanotubes is not possible.展开更多
The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial ...The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial properties are expressed by the effective levels of the inverse aspect ratio and the filler volume fraction.Moreover,the resistances of components in the contact regions are used to define the contact resistance,which inversely affects the effective conductivity.The obtained model is utilized to predict the effective conductivity for some examples.The discrepancy of the effective conductivity at various ranks of all factors is clarified.The interfacial conductivity directly controls the effective conductivity,while the filler conductivity plays a dissimilar role in the effective conductivity,due to the incomplete interfacial adhesion.A high operative conductivity is also achieved by small contact distances and high interfacial properties.Additionally,big contact diameters and little tunnel resistivity decrease the contact resistance,thus enhancing the effective conductivity.展开更多
Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomp...Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.展开更多
ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission elec...ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission electron microscopy and catalytic chemiluminescence measurement. The ZrO2 nanoparticles with size of several nanometers are uniformly coated on the graphene surface. The chemiluminescence characteristic to ethanol of the as-prepared nanocomposite paper is also investigated. The nanocomposite paper obtained displays high catalytic chemiluminescence sensitivity and highly selectivity to the ethanol gas. This study provides a facile, green and low-cost route to prepare nanoscopic gas sensing devices with application in safe protection, food fermentation, medical process and traffic safe.展开更多
This paper describes a study on electrical resistivity under loading of polyaniline (PANI)/graphene nanocomposite powders and compacts. The composites were prepared by an in-situ interfacial dynamic inverse emulsion p...This paper describes a study on electrical resistivity under loading of polyaniline (PANI)/graphene nanocomposite powders and compacts. The composites were prepared by an in-situ interfacial dynamic inverse emulsion polymerization technique under sonication of aniline in the presence of graphene sheets in chloroform. During polymerization the graphene nanoplatelets are coated with PANI and are well dispersed both in the polymeric suspension and then in the dried polymer matrix as evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and high resolution scanning microscopy (HRSEM). The presence of graphene nanoplatelets lowers the electrical resistivity of the polyaniline by two orders of magnitude for both the powder and the compact composites as demonstrated by their electrical resistance measurements conducted under loading. The lowest measured electrical resistivity values were 5 Ω·cm for 33% wt. graphene powder and 8 Ω·cm for 41% wt. graphene compacted composites. Cyclic electrical measurements under loading showed a distinct reproducible dependence of the bulk resistivity vs. applied pressure. This repetition is a key component for electro-mechanical sensors. To the authors’ best knowledge, this is the first report on polymerization of aniline in presence of graphene by the in-situ interfacial dynamic inverse emulsion polymerization technique and also the first report on cyclic electrical measurements under pressure of PANI/graphene nanocomposites.展开更多
基金The Natural Science Research Project of Minhang District,No.2021MHZ070.
文摘BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties.METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024.They were randomly assigned to three groups(n=20 each):Graphene nanocomposite material suction group(Group A),ordinary filter suction group(Group B),and no air suction device group(Group C).The air quality and air colony count in the clinic rooms were assessed before,during,and after the procedure.Additionally,bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B.RESULTS Before ultrasonic cleaning,no significant differences in air quality PM2.5 and colony counts were observed among the three groups.However,significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment.Additionally,the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B(P=0.000 and P=0.000,respectively).CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution.
基金Funded by the Jiangsu Funds for Distinguished Young Scientists(No.BK2012035)Program for New Century Excellent Talents in University(No.NCET-11-0834)the National Natural Science Foundation of China(No.21206075)
文摘The development of convenient method to obtain graphene-based nanocomposites is a key issue for their application. Herein, we described a facile route for synthesizing graphene-Cu and graphene-Cu2 O nanocomposites using graphene oxide-Cu O as a precursor. Remarkably, the different nanocomposites could be formed just by varying the reaction temperature and time. This work provides a feasible route for the preparation of graphene-based nanocomposites with various constituents.
基金B.M.and X.Z.appreciate the funding by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD(EXC 2122,Project ID 390833453).
文摘In modern physics and fabrication technology,simulation of projectile and target collision is vital to improve design in some critical applications,like;bulletproofing and medical applications.Graphene,the most prominent member of two dimensional materials presents ultrahigh tensile strength and stiffness.Moreover,polydimethylsiloxane(PDMS)is one of the most important elastomeric materials with a high extensive application area,ranging from medical,fabric,and interface material.In this work we considered graphene/PDMS structures to explore the bullet resistance of resulting nanocomposites.To this aim,extensive molecular dynamic simulations were carried out to identify the penetration of bullet through the graphene and PDMS composite structures.In this paper,we simulate the impact of a diamond bullet with different velocities on the composites made of single-or bi-layer graphene placed in different positions of PDMS polymers.The underlying mechanism concerning how the PDMS improves the resistance of graphene against impact loading is discussed.We discuss that with the same content of graphene,placing the graphene in between the PDMS result in enhanced bullet resistance.This work comparatively examines the enhancement in design of polymer nanocomposites to improve their bulletproofing response and the obtained results may serve as valuable guide for future experimental and theoretical studies.
文摘This study reports on the novel and simple green method involving the use of apple (Malus domestica) and tomato (Solanum lycopersicum) extracts in the synthesis of electroactive layers of silver nanoparticles|graphene oxide (AgNPs|GO) and zinc oxide nanoparticles|graphene oxide (ZnONPs|GO). The surface morphology of the green synthesized nanocomposites was studied using High-Resolution Transmission Electron Microscopy (HRTEM), High-Resolution Scanning Electron Microscopy (HRSEM) while the elemental analysis was studied using Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy and X-Ray diffraction (XRD) and their optical properties were further characterised using Ultraviolet Spectroscopy (UV-vis). The electrochemical studies of these nanocomposites were achieved using cyclic voltammetry (CV) where an increase in electron conductivity of the AgNPs|GO and ZnONPs|GO nanocomposite was observed. Comparatively, the silver nanoparticulate-based platforms were observed to have superior electrochemical properties as opposed to the zinc oxide-based platform. The observed electrochemical activities of the synthesized nanocomposites are a good indication of their suitability as electroactive platforms towards the development of electrochemical sensors. Electrochemical sensors are popular in the Electrochemistry field because they may be developed using different methods in order to suit their intended analytes. As such, the synthesis of a variety of electrochemical platforms provides researchers with a vast range of options to select from for the detection of analytes.
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFB3608000 and 2022YFA1204900)the National Natural Science Foundation of China (Grant Nos. 12222413 and 12074205)+2 种基金the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300)the Natural Science Foundation of Zhejiang Province (Grant No. LQ21A040004)the funding of Ningbo University (Grant No. LJ2024003)。
文摘Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.
文摘Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications.
基金supported by the Natural Science Foundation of Hebei Province,China(No.E2021202017)the National Natural Science Foundation of China(No.52061038)+3 种基金the Foundation Strengthening Program,China(No.2019-JCJQ-ZD-142-00)the Hebei Province Graduate Innovation Funding Project,China(No.CXZZBS2022032)the Jiangsu Provincial Policy Guidance Program(Special Project for the Introduction of Foreign Talents)Talent Introduction Program,China(No.BX2021024)the Science Plan Foundation of Tianjin Municipal Education Commission,China(No.2021KJ026)。
文摘In order to improve the comprehensive properties of the Cu-11.9Al-2.5Mn shape memory alloy(SMA),multilayer graphene(MLG)carried by Cu_(51)Zr_(14)inoculant particles was incorporated and dispersed into this alloy through preparing the preform of the cold-pressed MLG-Cu_(51)Zr_(14)composite powders.In the resultant novel MLG/Cu-Al-Mn composites,MLG in fragmented or flocculent form has a good bonding with the Cu-Al-Mn matrix.MLG can prevent the coarsening of grains of the Cu-Al-Mn SMA and cause thermal mismatch dislocations near the MLG/Cu-Al-Mn interfaces.The damping and mechanical properties of the MLG/Cu-Al-Mn composites are significantly improved.When the content of MLG reaches 0.2 wt.%,the highest room temperature damping of 0.0558,tensile strength of 801.5 MPa,elongation of 10.8%,and hardness of HV 308 can be obtained.On the basis of in-depth observation of microstructures,combined with the theory of internal friction and strengthening and toughening theories of metals,the relevant mechanisms are discussed.
基金sponsored by the National Science Foundation (NSF, CMMI-1562907)the GAANN Fellowship for financial support (No. P200A150330)the Navy STEM Fellowship and the GAANN Fellowship for financial support
文摘Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites.
基金the Youth Fund of Hebei Province Education Department,China(No.QN2017117)the Hebei Natural Science Funds for the Joint Research of Iron and Steel,China(Nos.E2019209374,E2015209278).
文摘We successfully constructed TiO_(2)-pillared multilayer graphene nanocomposites(T-MLGs)via a facile method as follows:dodecanediamine pre-pillaring,ion exchange(Ti4+pillaring),and interlayer in-situ formation of TiO_(2) by hydrothermal method.TiO_(2) nanoparticles were distributed uniformly on the graphene interlayer.The special structure combined the advantages of graphene and TiO_(2) nanoparticles.As a result,T-MLGs with 64.3wt%TiO_(2) showed the optimum photodegradation rate and adsorption capabilities toward ciprofloxacin.The photodegradation rate of T-MLGs with 64.3wt%TiO_(2) was 78%under light-emitting diode light irradiation for 150 min.Meanwhile,the pseudofirst-order rate constant of T-MLGs with 64.3wt%TiO_(2) was 3.89 times than that of pristine TiO_(2).The composites also exhibited high stability and reusability after five consecutive photocatalytic tests.This work provides a facile method to synthesize semiconductor-pillared graphene nanocomposites by replacing TiO_(2) nanoparticles with other nanoparticles and a feasible means for sustainable utilization of photocatalysts in wastewater control.
基金supported by the National Natural Science Foundation of China (21373138)Shanghai Sci. & Tech. Committee (12JC1407200)Program for Changjiang Scholars and Innovative Research Team in University (IRT1269)
文摘An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.
文摘Graphene has attracted considerable interest over recent years due to its intrinsic mechanical, thermal and electrical properties. Incorporation of small quantity of graphene fillers into polymer can create novel nanocomposites with im- proved structural and functional properties. This review introduced the recent progress in fabrication, properties and potential applications of graphene-polymer composites. Recent research clearly confirmed that graphene-polymer na-nocomposites are promising materials with applications ranging from transportation, biomedical systems, sensors, elec-trodes for solar cells and electromagnetic interference. In addition to graphene-polymer nanocomposites, this article also introduced the synergistic effects of hybrid graphene-carbon nanotubes (CNTs) on the properties of composites. Finally, some technical problems associated with the development of these nanocomposites are discussed.
文摘Low-dimensional nanomaterials such as graphene can be used as a reinforcing agent in building materials to enhance the strength and durability. Common building materials burnt red soil bricks and fly ash bricks were reinforced with various amounts of graphene, and the effect of graphene on the strength of these newly developed nanocomposites was studied. The fly ash brick nanocomposite samples were cured as per their standard curing time, and the burnt red soil brick nanocomposite samples were merely dried in the sun instead of being subjected to the traditional heat treatment for days to achieve sufficient strength. The water absorption ability of the fly ash bricks was also discussed. The compressive strength of all of the graphene-reinforced nanocomposite samples was tested, along with that of some standard (without graphene) composite samples with the same dimensions, to evaluate the effects of the addition of various amounts of graphene on the compressive strength of the bricks.
基金financial support for this research by the Australian Research Council(ARC)through the Future Fellowship(FT160100252)the Discovery Project(DP170102557)。
文摘The corrosion resistance and wear resistance of metallic biomaterials are critically important for orthopedic hard-tissue replacement applications because the lack of such properties not only adversely affects their mechanical integrity but also allows the release of wear debris into the human body.In this study,the potential of zirconium(Zr)as an alloying element and graphene nanoplatelets(GNPs)as a nano-reinforcement material were investigated in relation to improving the tribological performance of pure magnesium(Mg).The GNPs-reinforced Mg matrix nanocomposites(MNCs)were fabricated using powder metallurgy.Results indicate that additions of 0.5 wt.%Zr and0.1 wt.%GNPs to Mg matrices significantly improved the wear resistance by 89%and 92%at 200μN load,60%and 80%at 100μN load,and 94%and 93%at 50μN load,respectively,as compared to the wear resistance of pure Mg.The wear depth and coefficient of friction of the MNC containing 0.5 wt.%Zr and 0.1 wt.%GNPs(Mg0.5 Zr0.1 GNPs MNC)were considerably reduced as compared to pure Mg and Mg0.5 Zr.Our results demonstrate that the Mg0.5 Zr0.1 GNPs MNC is promising for orthopedic applications in relation to its excellent tribological performance.
基金the financial support from the National Key Research and Development Program of China (grant no. 2020YFA0711800)National Natural Science Foundation of China (grant no. 11802027, 51973033)+2 种基金State Key Laboratory of Explosion Science and Technology (grant no. YPJH20-6, QNKT20-01, JCRC18-01)BITBRFFR Joint Research Program (BITBLR2020018)Beijing Institute of Technology Research Fund。
文摘Molecular dynamics simulations have been performed to explore the underlying synergistic mechanism of pillared graphene or non-covalent connected graphene and carbon nanotubes(CNTs) on the mechanical properties of polyethylene(PE) nanocomposites. By constructing the pillared graphene model and CNTs/graphene model, the effect of the structure, arrangement and dispersion of hybrid fillers on the tensile mechanical properties of PE nanocomposites was studied. The results show that the pillared graphene/PE nanocomposites exhibit higher Young’s modulus, tensile strength and elongation at break than non-covalent connected CNTs/graphene/PE nanocomposites. The pull-out simulations show that pillared graphene by CNTs has both large interfacial load and long displacement due to the mixed modes of shear separation and normal separation. Additionally, pillared graphene can not only inhibit agglomeration but also form a compact effective thickness(stiff layer), consistent with the adsorption behavior and improved interfacial energy between pillared graphene and PE matrix.
文摘The development of carbon nanotubes based materials has been impeded by both their difficult dispersion in the polymer matrix and their high cost. The discovery of graphene and the subsequent development of graphene-based polymer nanocomposites is an important addition in the area of nanoscience and technology. In this study the influence of graphene nanoparticles (GNP) in concentrations from 2.0 to 10.0 phr on the dielectric (dielectric permittivity, dielectric loss angle tangent) and microwave (reflection coefficient, attenuation coefficient, shielding effectiveness) properties of nanocomposites on the basis of natural rubber has been investigated in the wide frequency range (1 - 12 GHz). The results achieved allow recommending graphene as a filler for natural rubber based composites to afford specific dielectric and microwave properties, especially when their loading with the much more expensive carbon nanotubes is not possible.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(No.2022R1A2C1004437)。
文摘The effective conductivity of graphene-based nanocomposites is suggested by the characteristics of polymer-filler interfacial areas as well as the contact resistance between the neighboring nanosheets.The interfacial properties are expressed by the effective levels of the inverse aspect ratio and the filler volume fraction.Moreover,the resistances of components in the contact regions are used to define the contact resistance,which inversely affects the effective conductivity.The obtained model is utilized to predict the effective conductivity for some examples.The discrepancy of the effective conductivity at various ranks of all factors is clarified.The interfacial conductivity directly controls the effective conductivity,while the filler conductivity plays a dissimilar role in the effective conductivity,due to the incomplete interfacial adhesion.A high operative conductivity is also achieved by small contact distances and high interfacial properties.Additionally,big contact diameters and little tunnel resistivity decrease the contact resistance,thus enhancing the effective conductivity.
基金financial support by the Australian Research Council (LP180100005 & DP200101737)。
文摘Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.
文摘ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission electron microscopy and catalytic chemiluminescence measurement. The ZrO2 nanoparticles with size of several nanometers are uniformly coated on the graphene surface. The chemiluminescence characteristic to ethanol of the as-prepared nanocomposite paper is also investigated. The nanocomposite paper obtained displays high catalytic chemiluminescence sensitivity and highly selectivity to the ethanol gas. This study provides a facile, green and low-cost route to prepare nanoscopic gas sensing devices with application in safe protection, food fermentation, medical process and traffic safe.
文摘This paper describes a study on electrical resistivity under loading of polyaniline (PANI)/graphene nanocomposite powders and compacts. The composites were prepared by an in-situ interfacial dynamic inverse emulsion polymerization technique under sonication of aniline in the presence of graphene sheets in chloroform. During polymerization the graphene nanoplatelets are coated with PANI and are well dispersed both in the polymeric suspension and then in the dried polymer matrix as evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and high resolution scanning microscopy (HRSEM). The presence of graphene nanoplatelets lowers the electrical resistivity of the polyaniline by two orders of magnitude for both the powder and the compact composites as demonstrated by their electrical resistance measurements conducted under loading. The lowest measured electrical resistivity values were 5 Ω·cm for 33% wt. graphene powder and 8 Ω·cm for 41% wt. graphene compacted composites. Cyclic electrical measurements under loading showed a distinct reproducible dependence of the bulk resistivity vs. applied pressure. This repetition is a key component for electro-mechanical sensors. To the authors’ best knowledge, this is the first report on polymerization of aniline in presence of graphene by the in-situ interfacial dynamic inverse emulsion polymerization technique and also the first report on cyclic electrical measurements under pressure of PANI/graphene nanocomposites.