The hydrogenation of carbon dioxide over Cu-Mo/HZSM-5 composite catalysts prepared by an impregnation method has been studied. The reduction property and adsorption ability of the catalyst towards hydrogen and carbon ...The hydrogenation of carbon dioxide over Cu-Mo/HZSM-5 composite catalysts prepared by an impregnation method has been studied. The reduction property and adsorption ability of the catalyst towards hydrogen and carbon dioxide have been investigated by TPR and TPD-MS techniques. The results indicated that the addition of Mo increased the activity and dimethyl ether selectivity of Cu/HZSM-5 catalyst, the most active and selective for dimethyl ether was the catalyst with n (Cu)/n (Mo) = 5:1. The addition of Mo caused the TPR peaks of Cu/HZSM-5 to move to higher temperatures. CO2-TPD results revealed the raise of the adsorbability of the catalyst toward CO2.展开更多
Mo/HZSM-5 is a good catalyst for methane aromatization, and the reaction,performance of Mo/HZSM-5 and Cu modified Mo/HZSM-5 catalysts under various pretreatment conditionshas been studied. The results indicate that th...Mo/HZSM-5 is a good catalyst for methane aromatization, and the reaction,performance of Mo/HZSM-5 and Cu modified Mo/HZSM-5 catalysts under various pretreatment conditionshas been studied. The results indicate that the catalyst presented a distinguished catalyticactivity, benzene selectivity and a high stability when the bed temperature was raised in N_2atmosphere.展开更多
Metal containing ZSM-5 can produce higher hydrocarbons in methane oxidation. Many researchers have studied the applicability of HZSM-5 and modify ZSM-5 for methane conversion to liquid hydrocarbons, but their research...Metal containing ZSM-5 can produce higher hydrocarbons in methane oxidation. Many researchers have studied the applicability of HZSM-5 and modify ZSM-5 for methane conversion to liquid hydrocarbons, but their research results still lead to low conversion, low selectivity and low heat resistance. The modified HZSM-5, by loading with tungsten (W), could enhance its heat resistant performance, and the high reaction temperature (800 ℃) did not lead to a loss of the W component by sublimation. The loading of HZSM-5 with tungsten and copper (Cu) resulted in an increment in the methane conversion as well as CO2 and C5+ selectivities. In contrast, CO, C2-3 and H2O selectivities were reduced. The process of converting methane to liquid hydrocarbons (C5+) was dependent on the metal surface area and the acidity of the zeolite. High methane conversion and C5+ selectivity, and low H20 selectivity are obtained over W/3.0Cu/HZSM.展开更多
文摘The hydrogenation of carbon dioxide over Cu-Mo/HZSM-5 composite catalysts prepared by an impregnation method has been studied. The reduction property and adsorption ability of the catalyst towards hydrogen and carbon dioxide have been investigated by TPR and TPD-MS techniques. The results indicated that the addition of Mo increased the activity and dimethyl ether selectivity of Cu/HZSM-5 catalyst, the most active and selective for dimethyl ether was the catalyst with n (Cu)/n (Mo) = 5:1. The addition of Mo caused the TPR peaks of Cu/HZSM-5 to move to higher temperatures. CO2-TPD results revealed the raise of the adsorbability of the catalyst toward CO2.
文摘Mo/HZSM-5 is a good catalyst for methane aromatization, and the reaction,performance of Mo/HZSM-5 and Cu modified Mo/HZSM-5 catalysts under various pretreatment conditionshas been studied. The results indicate that the catalyst presented a distinguished catalyticactivity, benzene selectivity and a high stability when the bed temperature was raised in N_2atmosphere.
基金Supported by Ministry of Science,Technology and Environment,Malaysia.
文摘Metal containing ZSM-5 can produce higher hydrocarbons in methane oxidation. Many researchers have studied the applicability of HZSM-5 and modify ZSM-5 for methane conversion to liquid hydrocarbons, but their research results still lead to low conversion, low selectivity and low heat resistance. The modified HZSM-5, by loading with tungsten (W), could enhance its heat resistant performance, and the high reaction temperature (800 ℃) did not lead to a loss of the W component by sublimation. The loading of HZSM-5 with tungsten and copper (Cu) resulted in an increment in the methane conversion as well as CO2 and C5+ selectivities. In contrast, CO, C2-3 and H2O selectivities were reduced. The process of converting methane to liquid hydrocarbons (C5+) was dependent on the metal surface area and the acidity of the zeolite. High methane conversion and C5+ selectivity, and low H20 selectivity are obtained over W/3.0Cu/HZSM.
基金supported by the National Natural Science Foundation of China(50772107)National Key Basic Research Program of China(973)(2007CB210206)National High-Tech Research and Development Program of China(863)(2009AA05Z435)~~