The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composite...The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.展开更多
Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the w...An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.展开更多
W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosi...W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosion resistance and the advantages of Cu - high heat conductivity and ductility. Four different fabrication processes for W/Cu or Mo/Cu, including hot-pressing, Cu infiltration of sintered porosity-graded W skeleton, spark plasma sintering and plasma spraying, were investigated and compared. It was foundthat the hot-pressing process is difficult to keep the designed composition gradient, while the other three processes are successful in making W/Cu or Mo/Cu FGM. Meanwhile, microstructures and composition gradients are analyzed with SEM and EDAX.展开更多
For electronic packaging applications, Mo/Cu composites with volume fractions of 55%, 60% and 67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and thermal and electric conduction ...For electronic packaging applications, Mo/Cu composites with volume fractions of 55%, 60% and 67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and thermal and electric conduction properties of the Mo/Cu composites were investigated. The results show that Mo particles are homogeneous and uniform, and the Mo-Cu interfaces are clean and free from interfacial reaction products and amorphous layers; the densifications of the Mo/Cu composites are higher than 99%. The thermal conductivities of Mo/Cu composites range from 220 to 270W/(m·℃) and decrease with an increase in volume fraction of Mo content. The thermal conductivities agree well with the predicted values of theoretical models. The electric conductivities of Mo/Cu composites are in the range of 2228MS/m and decrease with the increase of Mo content. The achievement of higher thermal and electric conduction is attributed to the full densities and high purity Mo/Cu composites, which are attained through the cost-effective squeeze-casting technology processes.展开更多
For electronic packaging applications,Mo/Cu composites with volume fractions of 55%-67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and properties of the Mo/Cu composites were in...For electronic packaging applications,Mo/Cu composites with volume fractions of 55%-67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and properties of the Mo/Cu composites were investigated. The results show that Mo particles are homogeneous and uniformly,and the Mo-Cu interfaces are clean and free-from interfacial reaction products and amorphous layers,the densifications of the Mo/Cu composites are higher than 99%. The mean linear coefficients of thermal expansion(20-100 ℃) of Mo/Cu composites range from 7.9 to 9.3×10-6/℃ and decrease with increasing volume fraction of Mo. The experimental coefficients of thermal expansion agree well with predicted values based on Kerner's model. The thermal and electric conductivities of Mo/Cu composites are in range of 220-270 W/(m·℃) and 22-28 MS/m,respectively,and decrease with increasing volume fraction of Mo. The achievement of higher thermal and electric conduction is attributed to the full densities and high purity,which are obtained through the cost-effective squeeze-casting technology processes.展开更多
The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer...The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren...A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.展开更多
Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film i...Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.展开更多
The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With ...The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.展开更多
The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
基金the financial support provided by the National Natural Science Foundation of China(No.52274369)the Science and Technology Program of Hunan Province,China(No.2020GK2044)。
文摘The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.
文摘An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.
文摘W/Cu Functionally Graded Materials (FGM) was designed not only for reducing the thermal stress caused by the mismatch of thermal expansion coefficients, but also for combining the features of W, Mo - high plasma-erosion resistance and the advantages of Cu - high heat conductivity and ductility. Four different fabrication processes for W/Cu or Mo/Cu, including hot-pressing, Cu infiltration of sintered porosity-graded W skeleton, spark plasma sintering and plasma spraying, were investigated and compared. It was foundthat the hot-pressing process is difficult to keep the designed composition gradient, while the other three processes are successful in making W/Cu or Mo/Cu FGM. Meanwhile, microstructures and composition gradients are analyzed with SEM and EDAX.
文摘For electronic packaging applications, Mo/Cu composites with volume fractions of 55%, 60% and 67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and thermal and electric conduction properties of the Mo/Cu composites were investigated. The results show that Mo particles are homogeneous and uniform, and the Mo-Cu interfaces are clean and free from interfacial reaction products and amorphous layers; the densifications of the Mo/Cu composites are higher than 99%. The thermal conductivities of Mo/Cu composites range from 220 to 270W/(m·℃) and decrease with an increase in volume fraction of Mo content. The thermal conductivities agree well with the predicted values of theoretical models. The electric conductivities of Mo/Cu composites are in the range of 2228MS/m and decrease with the increase of Mo content. The achievement of higher thermal and electric conduction is attributed to the full densities and high purity Mo/Cu composites, which are attained through the cost-effective squeeze-casting technology processes.
基金Project(2003AA305110) supported by the National Hi-tech Research and Development Program of ChinaProject(2003AA5CG041) supported by the Key-Tech Research and Development Program of Harbin Province, China
文摘For electronic packaging applications,Mo/Cu composites with volume fractions of 55%-67% Mo were fabricated by the patented squeeze-casting technology. The microstructures and properties of the Mo/Cu composites were investigated. The results show that Mo particles are homogeneous and uniformly,and the Mo-Cu interfaces are clean and free-from interfacial reaction products and amorphous layers,the densifications of the Mo/Cu composites are higher than 99%. The mean linear coefficients of thermal expansion(20-100 ℃) of Mo/Cu composites range from 7.9 to 9.3×10-6/℃ and decrease with increasing volume fraction of Mo. The experimental coefficients of thermal expansion agree well with predicted values based on Kerner's model. The thermal and electric conductivities of Mo/Cu composites are in range of 220-270 W/(m·℃) and 22-28 MS/m,respectively,and decrease with increasing volume fraction of Mo. The achievement of higher thermal and electric conduction is attributed to the full densities and high purity,which are obtained through the cost-effective squeeze-casting technology processes.
文摘The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
基金Funded by the National Natural Science Foundation of China(No.21274007)the Beijing Natural Science Foundation+1 种基金the Key Scientific Project of Beijing Municipal Education Commission(No.KZ201110011014)the Science and Technology Innovation Platform of Beijing Municipal Education Commission(No.PXM2012-014213-000025)
文摘A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.
文摘Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.
基金The National Natural Science Foundation of China(No:50371031)
文摘The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.