Corrosion behavior of heavily drawn bundled Copper-niobium filamentarymicro-composite was studied as a function of niobium content to develop the relationship betweenmicrostructure and corrosion behavior in aqueous 30...Corrosion behavior of heavily drawn bundled Copper-niobium filamentarymicro-composite was studied as a function of niobium content to develop the relationship betweenmicrostructure and corrosion behavior in aqueous 30 percent HCl-FeCl_3 solution. TEM observationrevealed that niobium filaments were distributed regularly in copper matrix along the sides of atriangular unit cell in the transverse section and more sub-grain boundaries were absorbed atcopper/niobium phase boundaries with increasing niobium content. The corrosion potential and rate inaqueous 30 percent HCl-10 percent FeCl_3 was-680.3m V_(SHE) and 1.179 X 10^(-5)A/cm^2. Thecorrosion potential and rate decreased as increasing niobium content and FeCl_3. The yield stresscan be described as the sum of the substructure strengthening component due to elongated grains,subgrains and/or cells, the phase boundary strengthening term associated with the Hall-Petch typeinteraction between dislocations and phase boundaries and precipitate strengthening component.展开更多
The mechanical properties and fracture morphologies of Cu/Nb multilayer composites under electric-assisted tension(EAT)were investigated.Results show that the generated Joule-heat leads to obvious stress softening wit...The mechanical properties and fracture morphologies of Cu/Nb multilayer composites under electric-assisted tension(EAT)were investigated.Results show that the generated Joule-heat leads to obvious stress softening with the increase in current density.However,the elongation decreases,which is closely related to the characteristic fracture behavior of Cu/Nb multilayer composites during EAT.The fracture pattern is gradually transformed from ductile fracture to melt fracture with the increase in current density.展开更多
文摘Corrosion behavior of heavily drawn bundled Copper-niobium filamentarymicro-composite was studied as a function of niobium content to develop the relationship betweenmicrostructure and corrosion behavior in aqueous 30 percent HCl-FeCl_3 solution. TEM observationrevealed that niobium filaments were distributed regularly in copper matrix along the sides of atriangular unit cell in the transverse section and more sub-grain boundaries were absorbed atcopper/niobium phase boundaries with increasing niobium content. The corrosion potential and rate inaqueous 30 percent HCl-10 percent FeCl_3 was-680.3m V_(SHE) and 1.179 X 10^(-5)A/cm^2. Thecorrosion potential and rate decreased as increasing niobium content and FeCl_3. The yield stresscan be described as the sum of the substructure strengthening component due to elongated grains,subgrains and/or cells, the phase boundary strengthening term associated with the Hall-Petch typeinteraction between dislocations and phase boundaries and precipitate strengthening component.
基金National Natural Science Foundation of China(52305349)China Postdoctoral Science Foundation(2023M730837)+2 种基金Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0518)Heilongjiang Provincial Natural Science Foundation of China(LH2023E033)Supported by CGN-HIT Advanced Nuclear and New Energy Research Institute(CGN-HIT202305)。
文摘The mechanical properties and fracture morphologies of Cu/Nb multilayer composites under electric-assisted tension(EAT)were investigated.Results show that the generated Joule-heat leads to obvious stress softening with the increase in current density.However,the elongation decreases,which is closely related to the characteristic fracture behavior of Cu/Nb multilayer composites during EAT.The fracture pattern is gradually transformed from ductile fracture to melt fracture with the increase in current density.