To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden...To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.展开更多
The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated th...The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.展开更多
The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To inve...The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.展开更多
By means of adding low content of rare earth element La into Sn60 Pb40 solder alloy, the growth of Cu 6Sn 5 intermetallic compound at the interface of solder joint is hindered, and the thermal fatigue life of solde...By means of adding low content of rare earth element La into Sn60 Pb40 solder alloy, the growth of Cu 6Sn 5 intermetallic compound at the interface of solder joint is hindered, and the thermal fatigue life of solder joint is increased by 2 times. The results of thermodynamic calculation based on diffusion kinetics show that, the driving force for Cu 6Sn 5 growth is lowered by adding small content of La in Sn60 Pb40 solder alloy. Meanwhile, there is an effective local mole fraction range of La, in which, 0 18% is the limited value and 0 08% is the best value.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is ...Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.展开更多
基金Projects(51475072,51171036)supported by the National Natural Science Foundation of China
文摘To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.
基金Project (2005DKA10400-Z23) supported by Chinese National Science and Technology InfrastructureProject (DUT10R:(3)65) supported by Fundamental Research Funds for the Central Universities,China
文摘The corrosion behaviors of Sn-0.75Cu solder and Sn-0.75Cu/Cu joint in 3.5% NaCl(mass fraction) solution were studied by potentiodynamic polarization test and leaching measurement.The polarization curves indicated that the corrosion rate of Sn-0.75Cu solder was lower than that of Sn-0.75Cu/Cu joint.The morphology observation and phase composition analysis on the corroded product at each interesting potential suggested that Sn3O(OH)2Cl2 formed on the surface of Sn-0.75Cu solder at active dissolution stage.As the potential increased from active/passive transition stage,all the surface of Sn-0.75Cu solder was covered by the Sn3O(OH)2Cl2 and some pits appeared after the polarization test.Compared to the Sn-0.75Cu solder alloy,much more Sn3O(OH)2Cl2 formed at active dissolution stage and the pits with bigger size were observed after polarization test for the Sn-0.75Cu/Cu solder joints.The leaching test confirmed that the faster electrochemical corrosion rate resulted in the larger amount of Sn released from the Sn-0.75Cu/Cu solder joints.
文摘The effects of Bi addition on the growth of intermetallic compound (IMC) formation in Sn-3.8Ag-0.7Cu solder joints were investigated. The test samples were prepared by conventional surface mounting technology. To investigate the element diffusion and the growth kinetics of intermetallics formation in solder joint, isothermal aging test was performed at temperatures of 100, 150, and 190℃, respectively. The optical microscope (OM) and scanning electron microscope (SEM) were used to observe microstructure evolution of solder joint and to estimate the thickness and the grain size of the intermetallic layers. The IMC phases were identified by energy dispersive X-ray (EDX) and X-ray diffractometer (XRD). The results clearly show that adding about 1.0% Bi in Sn-Ag-Cu solder alloy system can refine the grain size of the IMC and inhibit the excessive IMC growth in solder joints, and therefore improve the reliability of the Pb-free solder joints. Through observation of the microstructural evolution of the solder joints, the mechanism of inhibition of IMC growth due to Bi addition was proposed.
文摘By means of adding low content of rare earth element La into Sn60 Pb40 solder alloy, the growth of Cu 6Sn 5 intermetallic compound at the interface of solder joint is hindered, and the thermal fatigue life of solder joint is increased by 2 times. The results of thermodynamic calculation based on diffusion kinetics show that, the driving force for Cu 6Sn 5 growth is lowered by adding small content of La in Sn60 Pb40 solder alloy. Meanwhile, there is an effective local mole fraction range of La, in which, 0 18% is the limited value and 0 08% is the best value.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.
基金supported by the opening fund of National Key Research and Development Program of China(No.2020YFE0205300)Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences(No.KLSDTJJ2022-5)+1 种基金Chongqing Natural Science Foundation of China(No.cstc2021jcyj-msxmX1002)the Fundamental Research Funds for the Central Universities(No.AUGA5710051221).
文摘Sn/ENIG has recently been used in flexible interconnects to form a more stable micron-sized metallurgical joint,due to high power capability which causes solder joints to heat up to 200℃.However,Cu_(6)Sn_(5)which is critical for a microelectronic interconnection,will go through a phase transition at temperatures between 186 and 189℃.This research conducted an in-situ TEM study of a micro Cu/ENIG/Sn solder joint under isothermal aging test and proposed a model to illustrate the mechanism of the microstructural evolution.The results showed that part of the Sn solder reacted with Cu diffused from the electrode to formη´-Cu_(6)Sn_(5)during the ultrasonic bonding process,while the rest of Sn was left and enriched in a region in the solder joint.But the enriched Sn quickly diffused to both sides when the temperature reached 100℃,reacting with the ENIG coating and Cu to form(Ni_(x)Cu_(1-x))_(3)Sn_(4),AuSn_(4),and Cu_(6)Sn_(5)IMCs.After entering the heat preservation process,the diffusion of Cu from the electrode to the joint became more intense,resulting in the formation of Cu_(3)Sn.The scallop-type Cu_(6)Sn_(5)and the seahorse-type Cu_(3)Sn constituted a typical two-layered structure in the solder joint.Most importantly,the transition betweenηandη’was captured near the phase transition temperature for Cu_(6)Sn_(5)during both the heating and cooling process,which was accompanied by a volume shifting,and the transition process was further studied.This research is expected to serve as a reference for the service of micro Cu/ENIG/Sn solder joints in the electronic industry.