Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we ...Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.展开更多
The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 ...The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NO_x catalyticreduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited theextremely high catalytic activity, but also showed good stability for O_2. The bulk phase structureof Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is amaximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu andMo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structurefavorable for the catalytic reduction of NO_x over Cu-Mo/ZSM-5 catalyst.展开更多
Two series of Cu/ZSM-5 catalysts, loading from 5 to 20 wt% CuO, were prepared by the deposition-precipitation and impregnation methods, respectively. The catalysts prepared by the impreg- nation method showed better c...Two series of Cu/ZSM-5 catalysts, loading from 5 to 20 wt% CuO, were prepared by the deposition-precipitation and impregnation methods, respectively. The catalysts prepared by the impreg- nation method showed better catalytic performances than those prepared by the deposition-precipitation method and the increase of copper loading favored methane conversion. 20Cu(I)/ZSM-5 had the highest activity with T90% of 746 K, and for 20Cu(D)/ZSM-5, T90% was as high as 804 K. The characterization of X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) revealed that the dispersion of copper species could be improved by using the deposition-precipitation method instead of the impregnation method, but the fraction of surface CuO, corresponding to active sites for methane oxidation, was larger on 20Cu(I)/ZSM-5 than 20Cu(D)/ZSM-5. The results of Pyridine-Fourier transform infrared spectrum (Py-FT-IR) showed that a majority of Lewis acidity and a minority of Brфnsted acidity were present on Cu/ZSM-5 catalysts. 20Cu(I)/ZSM-5 presented more Lewis acid sites. The number of Lewis acid sites changed significantly with preadsorption of oxygen. Adsorption of methane and oxygen on acid sites was observed. The properties of Cu/ZSM-5 catalysts were correlated with the activity for methane oxidation.展开更多
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability we...The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.展开更多
Fischer-Tropsch synthesis (FTS) reaction for the direct production of gasoline range hydrocarbons (C5-C9) from syngas was investigated on Ru, Pt, and La promoted Co/ZSM-5 (Si/Al = 25) catalysts. The hybrid catalysts w...Fischer-Tropsch synthesis (FTS) reaction for the direct production of gasoline range hydrocarbons (C5-C9) from syngas was investigated on Ru, Pt, and La promoted Co/ZSM-5 (Si/Al = 25) catalysts. The hybrid catalysts were characterized by BET surface area, XRD, H2-TPR, NH3-TPD and XPS analyses. These physico-chemical properties were correlated with activity and selectivity of the catalysts. The promoted Co/ZSM-5 hybrid catalysts were found to be superior to the unpromoted Co/ZSM-5 catalyst in terms of better C5-C9 selectivity. Pt-Co/ZSM-5 exhibited the highest catalytic activity because of the small cobalt particle size.展开更多
The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catal...The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catalytic behavior of resulting catalyst for xylene isomerization,propylene aromatization and toluene disproportionation is better than that of HZSM—5 zeolite.展开更多
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
基金Supported by the National Natural Science Foundation of China(21676238)
文摘Although the preparation of ZSM-5@silicalite-1(ZS) core–shell catalysts has been reported in the literature,their selectivity to para-xylene(PX)in the toluene alkylation with methanol is difficult to control.Here we present the effects of water and ZSM-5 adding amounts in the synthesis solution,the hydrothermal synthesis time,and the Si/Al ratio of core ZSM-5 on the catalytic performance of ZS core–shell catalysts.The ZS core–shell catalysts were characterized by X-ray diffraction (XRD),N_2 adsorption,and NH_3 temperature-programmed desorption (NH_3-TPD) techniques.The highest PX selectivity of 95.5%was obtained for the ZS(Si/Al=140) catalyst prepared in the synthesis solution with a molar ratio of 0.2 TPAOH:1TEOS:250H_2O at 175°C and 10 r·min^(-1) for only 2 h and the corresponding toluene conversion is as high as 22.8% for the alkylation of toluene with methanol.
文摘The Cu-Mo/ZSM-5 catalysts with different Cu/Mo ratios were prepared by wetimpregnation method, and their catalytic performance for selective catalytic reduction of NO_x wasstudied. The results showed that Cu-Mo/ZSM-5 is a very effective catalyst for NO_x catalyticreduction with ammonia, especially when Cu/Mo molar ratio is about 1.5. It not only exhibited theextremely high catalytic activity, but also showed good stability for O_2. The bulk phase structureof Cu-Mo/ZSM-5 catalysts was determined by XRD technique, and the results indicated that there is amaximum dispersion for Cu species when Cu/Mo molar ratio is 1.5, and an interaction between Cu andMo along with HZSM-5 may be present in Cu-Mo/ZSM-5, which may possibly result in a special structurefavorable for the catalytic reduction of NO_x over Cu-Mo/ZSM-5 catalyst.
基金This work was supported by the National Basic Research Program of China(No.2004CB719500)the NSFC(No.20377012).
文摘Two series of Cu/ZSM-5 catalysts, loading from 5 to 20 wt% CuO, were prepared by the deposition-precipitation and impregnation methods, respectively. The catalysts prepared by the impreg- nation method showed better catalytic performances than those prepared by the deposition-precipitation method and the increase of copper loading favored methane conversion. 20Cu(I)/ZSM-5 had the highest activity with T90% of 746 K, and for 20Cu(D)/ZSM-5, T90% was as high as 804 K. The characterization of X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS) revealed that the dispersion of copper species could be improved by using the deposition-precipitation method instead of the impregnation method, but the fraction of surface CuO, corresponding to active sites for methane oxidation, was larger on 20Cu(I)/ZSM-5 than 20Cu(D)/ZSM-5. The results of Pyridine-Fourier transform infrared spectrum (Py-FT-IR) showed that a majority of Lewis acidity and a minority of Brфnsted acidity were present on Cu/ZSM-5 catalysts. 20Cu(I)/ZSM-5 presented more Lewis acid sites. The number of Lewis acid sites changed significantly with preadsorption of oxygen. Adsorption of methane and oxygen on acid sites was observed. The properties of Cu/ZSM-5 catalysts were correlated with the activity for methane oxidation.
文摘The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li+ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure. Catalyst activity and stability were found to be influenced by the catalyst acidity related to Bronsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H+ ions by Li+ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further. The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.
文摘Fischer-Tropsch synthesis (FTS) reaction for the direct production of gasoline range hydrocarbons (C5-C9) from syngas was investigated on Ru, Pt, and La promoted Co/ZSM-5 (Si/Al = 25) catalysts. The hybrid catalysts were characterized by BET surface area, XRD, H2-TPR, NH3-TPD and XPS analyses. These physico-chemical properties were correlated with activity and selectivity of the catalysts. The promoted Co/ZSM-5 hybrid catalysts were found to be superior to the unpromoted Co/ZSM-5 catalyst in terms of better C5-C9 selectivity. Pt-Co/ZSM-5 exhibited the highest catalytic activity because of the small cobalt particle size.
文摘The composite ZSM—5 zeolite/vermiculite catalyst,in which tiny ZSM—5 zeolite parti- cles embedded in the vermiculite substrate,has been synthesized by hydrothermal method with vermiculite as silicon source.The catalytic behavior of resulting catalyst for xylene isomerization,propylene aromatization and toluene disproportionation is better than that of HZSM—5 zeolite.