Aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices due to their low cost,high capacity,and ecological safety.Nevertheless,the severe dendritic growth and side reactions hinder their prac...Aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices due to their low cost,high capacity,and ecological safety.Nevertheless,the severe dendritic growth and side reactions hinder their practical applicability significantly.Herein,an ultrathin Cu coating layer(~200 nm)is decorated on zinc foils via filtered cathodic vacuum arc deposition technology,aiming to achieve high-performance AZIBs.The Cu layer effectively suppresses chemical corrosion and hydrogen evolution reactions and enables preferential(002)Zn deposition during the stripping/plating cycles.Consequently,the Cu@Zn anode represents an elongated cycle life over 4,000 h at 2 mA·cm^(-2)/2 mAh·cm^(-2).Even in conditions of high current density of 5 and 10 mA·cm^(-2),the Cu@Zn anode shows prolonged cycling stability exceeding 4000 and 2000 h,respectively.Such advantages also bring high Coulombic efficiency of 99.87%under 5 mAh·cm^(-2)in Cu@Ti||Zn half-cell over 1500 cycles.Moreover,the Cu@Zn||MnO_(2)full cell demonstrates a superior cyclability with a specific capacity of 203 mAh·g^(-1)after 500 cycles a1 A·g^(-1).展开更多
Lithium metal batteries(LMBs) are ideal candidates for next-generation high energy density energy storage systems.However,uncontrollable growth of Li dendrites due to uneven Li plating has restricted the practical app...Lithium metal batteries(LMBs) are ideal candidates for next-generation high energy density energy storage systems.However,uncontrollable growth of Li dendrites due to uneven Li plating has restricted the practical application of the Li metal anode.Here,we develop a highly lithiophilic Zn coating on commercial Cu foil as a substrate for Li metal anode to settle above issues.We find that the lithiophilic nature of Zn can facilitate homogeneous nucleation and deposition of Li on Cu current collector surface.In addition,the uniform Zn coating can not only decrease the nucleation overpotential but also regulate the electric field distribution.Benefiting from the coated Zn layer,the designed anode for half-cell and full-cell tests shows better electrochemical performances compared with the untreated Cu foil.This work provides a simple and effective way to enable a promising dendrite-free lithium metal anode for large-scale industrial applications.展开更多
以自制焦磷酸盐为主要原料,加入适当的添加剂,对经表面处理的玻璃钢制品进行无氰Cu Zn Sn Co四元合金仿金电镀,讨论了镀液组分及工艺参数对镀层质量的影响。试验结果表明,在温度为30~50℃,电流密度为0.3~0.7A/dm2,pH值为7.0~9.0的条...以自制焦磷酸盐为主要原料,加入适当的添加剂,对经表面处理的玻璃钢制品进行无氰Cu Zn Sn Co四元合金仿金电镀,讨论了镀液组分及工艺参数对镀层质量的影响。试验结果表明,在温度为30~50℃,电流密度为0.3~0.7A/dm2,pH值为7.0~9.0的条件下,可获得18~24K金色镀层,经有效的后处理工艺,可使镀层色泽均一,性能稳定。展开更多
基金supported by the National Natural Science Foundation of China(Nos.52271117 and12027813)Hunan Provincial Natural Science Foundation of China(No.2021JJ30646)the High Technology Research and Development Program of Hunan Province of China(No.2022GK4038).
文摘Aqueous zinc-ion batteries(AZIBs)are regarded as promising energy storage devices due to their low cost,high capacity,and ecological safety.Nevertheless,the severe dendritic growth and side reactions hinder their practical applicability significantly.Herein,an ultrathin Cu coating layer(~200 nm)is decorated on zinc foils via filtered cathodic vacuum arc deposition technology,aiming to achieve high-performance AZIBs.The Cu layer effectively suppresses chemical corrosion and hydrogen evolution reactions and enables preferential(002)Zn deposition during the stripping/plating cycles.Consequently,the Cu@Zn anode represents an elongated cycle life over 4,000 h at 2 mA·cm^(-2)/2 mAh·cm^(-2).Even in conditions of high current density of 5 and 10 mA·cm^(-2),the Cu@Zn anode shows prolonged cycling stability exceeding 4000 and 2000 h,respectively.Such advantages also bring high Coulombic efficiency of 99.87%under 5 mAh·cm^(-2)in Cu@Ti||Zn half-cell over 1500 cycles.Moreover,the Cu@Zn||MnO_(2)full cell demonstrates a superior cyclability with a specific capacity of 203 mAh·g^(-1)after 500 cycles a1 A·g^(-1).
基金the National Natural Science Foundation of China(Nos.U1904216,51771236 and 51901249)the Innovation-Driven Project of Central South University(No.2020CX007)the Natural Science Foundation of Hunan Province(No.2020JJ5719)。
文摘Lithium metal batteries(LMBs) are ideal candidates for next-generation high energy density energy storage systems.However,uncontrollable growth of Li dendrites due to uneven Li plating has restricted the practical application of the Li metal anode.Here,we develop a highly lithiophilic Zn coating on commercial Cu foil as a substrate for Li metal anode to settle above issues.We find that the lithiophilic nature of Zn can facilitate homogeneous nucleation and deposition of Li on Cu current collector surface.In addition,the uniform Zn coating can not only decrease the nucleation overpotential but also regulate the electric field distribution.Benefiting from the coated Zn layer,the designed anode for half-cell and full-cell tests shows better electrochemical performances compared with the untreated Cu foil.This work provides a simple and effective way to enable a promising dendrite-free lithium metal anode for large-scale industrial applications.
文摘以自制焦磷酸盐为主要原料,加入适当的添加剂,对经表面处理的玻璃钢制品进行无氰Cu Zn Sn Co四元合金仿金电镀,讨论了镀液组分及工艺参数对镀层质量的影响。试验结果表明,在温度为30~50℃,电流密度为0.3~0.7A/dm2,pH值为7.0~9.0的条件下,可获得18~24K金色镀层,经有效的后处理工艺,可使镀层色泽均一,性能稳定。