Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,c...Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.展开更多
Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in d...Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).展开更多
A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and spac...A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.展开更多
Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on...Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.展开更多
A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial act...A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial activity and a poor stability. The formation of the CuZn alloys was observed in the deactivated Cu/Zn catalysts which were used for methanol decomposition at 250 . When small amounts of Ni were added in the catalyst, the Cu/Zn/Ni(molar ratio 5/4/ x) catalysts showed a high activity at a low temperature. The activity and the stability of the catalyst depend on the nickel content. The activity of the Cu/Zn/Ni catalysts was maintained at a. relatively stable value of 78% conversion of methanol with 95% selectivity of H2, 93% selectivity of CO, and a more than 70% yield of hydrogen was obtained at 250 C when x >1. The stability of the Cu/Zn/Ni (molar ratio 5/4/x) catalysts showed the maximum (ca 88%) when x=1. The stabilization effect of nickel on the Cu/Zn based catalysts may lead to the increasing of the dispersion of active Cu species and the prevention of CuZn alloys formation.展开更多
A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the d...A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).展开更多
The bainitic transformation in a Cu-Zn-Al-Mn alloy has been examined with TEM.The re- sults show that the stacking faults and also the bainitic midrib are found at the beginning of bainite formation in the alloy.The s...The bainitic transformation in a Cu-Zn-Al-Mn alloy has been examined with TEM.The re- sults show that the stacking faults and also the bainitic midrib are found at the beginning of bainite formation in the alloy.The stacking fault planes can pass continuously through the midrib in bainite.The growth ledges occur at the broad faces and rims of bainite.The broad and narrow faces of th ledges are parallel to the fault plane and habit plane respectively.Both their Miller indices are {110}_(B2).The moving direction of ledges is parallel to the fault plane. It may be deduced that the bainite in alloy are initially formed by shear and the process of growth are go verned by propagation o f fault planes.展开更多
利用共沉淀法制备了四组分的Cu Zn Al Mn和Cu Zn Al Ce催化剂以及三组分的Cu Zn Al催化剂。利用组成H2/CO/CO2/N2=66/27/3/4(体积比)的富CO原料气对催化剂进行了活性评价,并研究了温度、压力和空速等反应条件对催化剂活性的影响。结果...利用共沉淀法制备了四组分的Cu Zn Al Mn和Cu Zn Al Ce催化剂以及三组分的Cu Zn Al催化剂。利用组成H2/CO/CO2/N2=66/27/3/4(体积比)的富CO原料气对催化剂进行了活性评价,并研究了温度、压力和空速等反应条件对催化剂活性的影响。结果发现添加适量的锰助剂能显著提高催化剂的活性和热稳定性。利用SEM和XRD方法进行了催化剂的结构和形貌表征,同样表明锰助剂可以起到阻止CuO晶粒长大和促进CuO分散作用。利用富CO2的生物质原料气体积比为H2/CO/CO2/N2=50/25/20/5对Cu Zn Al Mn催化剂进行的评价表明:Cu Zn Al Mn催化剂上CO/CO2加氢合成甲醇的甲醇产率和选择性均有下降,在试验范围内,甲醇产率下降11%~25%,选择性为93%~95%。展开更多
基金financially supported by the National Natural Science Foundation of China(No.U1810205)the National Basic Research Program of China(No.2014CB 643401)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes。
文摘Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
基金supported by the National Basic Research Program of China (No. 2011CB201404)the financial support of the State Key Laboratory for Oxo Synthesis and Selective Oxidation (OSSO) of China
文摘Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h);T=513 K,p=3MPa,SV=12000 h-1).
基金Supported by the National Natural Science Foundation of China (20576060, 20606021), and the Specialized Research Fund for the Doctoral Program of Higher Education (20050003030).
文摘A highly active Cu/Zn/Al/Zr fibrous catalyst was developed for methanol synthesis from CO2 hydrogenation. Various factors that affect the activity of the catalyst, including the reaction temperature, pressure and space velocity, were investigated. The kinetic parameters in Graaf's kinetic model for methanol synthesis were obtalned. A quasi-stable economical process for CO2 hydrogenation through CO circulation was simulated and higher methanol yield was obtained.
基金supported by the Key Science and Technology Program of Shanxi Province,China (MD2014-10)the National Key Technology Re-search and Development Program (2013BAC11B00)the National Natural Science Foundation of China (21343012)~~
文摘Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.
文摘A series of Cu/Zn based catalysts with and without Ni, prepared by the co-precipitation method, has been studied for methanol decomposition. CO and H2 are the major products. The Cu/Zn catalysts show a low initial activity and a poor stability. The formation of the CuZn alloys was observed in the deactivated Cu/Zn catalysts which were used for methanol decomposition at 250 . When small amounts of Ni were added in the catalyst, the Cu/Zn/Ni(molar ratio 5/4/ x) catalysts showed a high activity at a low temperature. The activity and the stability of the catalyst depend on the nickel content. The activity of the Cu/Zn/Ni catalysts was maintained at a. relatively stable value of 78% conversion of methanol with 95% selectivity of H2, 93% selectivity of CO, and a more than 70% yield of hydrogen was obtained at 250 C when x >1. The stability of the Cu/Zn/Ni (molar ratio 5/4/x) catalysts showed the maximum (ca 88%) when x=1. The stabilization effect of nickel on the Cu/Zn based catalysts may lead to the increasing of the dispersion of active Cu species and the prevention of CuZn alloys formation.
基金supported by Science and Technology Development Project of Shandong Province. 2007GG3 WZ03018
文摘A series of mesoporous Cu-Zn-Al2O3 materials have been synthesized at ambient temperature and their structure was characterized by XRD, N2 physical adsorption and TPR techniques. Their catalytic applications for the dehydrogenation of 2-butanol to methyl ethyl ketone (MEK) were evaluated in a fixed-bed flow reactor at atmospheric pressure. It is demonstrated from the XRD patterns that both the as-synthesized samples and calcined samples have the typical XRD patterns of meso-structured materials and the results of N20 chemical adsorption showed that Cu was embedded in the framework of the mesoporous materials and homogeneously dispersed in the mesoporous Cu-Zn-Al2O3 materials. The catalytic activity of 2-butanol dehydrogenation was varied in the order of CZA(10) 〈 CZA(CP) 〈 CZA(20) 〈 CZA(30); while the selectivity of MEK was increased in the order of CZA(CP) 〈 CZA(10) 〈 CZA(20) 〈CZA(30).
文摘The bainitic transformation in a Cu-Zn-Al-Mn alloy has been examined with TEM.The re- sults show that the stacking faults and also the bainitic midrib are found at the beginning of bainite formation in the alloy.The stacking fault planes can pass continuously through the midrib in bainite.The growth ledges occur at the broad faces and rims of bainite.The broad and narrow faces of th ledges are parallel to the fault plane and habit plane respectively.Both their Miller indices are {110}_(B2).The moving direction of ledges is parallel to the fault plane. It may be deduced that the bainite in alloy are initially formed by shear and the process of growth are go verned by propagation o f fault planes.
文摘利用共沉淀法制备了四组分的Cu Zn Al Mn和Cu Zn Al Ce催化剂以及三组分的Cu Zn Al催化剂。利用组成H2/CO/CO2/N2=66/27/3/4(体积比)的富CO原料气对催化剂进行了活性评价,并研究了温度、压力和空速等反应条件对催化剂活性的影响。结果发现添加适量的锰助剂能显著提高催化剂的活性和热稳定性。利用SEM和XRD方法进行了催化剂的结构和形貌表征,同样表明锰助剂可以起到阻止CuO晶粒长大和促进CuO分散作用。利用富CO2的生物质原料气体积比为H2/CO/CO2/N2=50/25/20/5对Cu Zn Al Mn催化剂进行的评价表明:Cu Zn Al Mn催化剂上CO/CO2加氢合成甲醇的甲醇产率和选择性均有下降,在试验范围内,甲醇产率下降11%~25%,选择性为93%~95%。