Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep...Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.展开更多
Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solu...Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solution are reported.Researches are made on the influence of the fundamental parameters including pH,temperature,and concentrations of the solution involved in the chemical bath deposition of CdS and titration or dumping of the thiourea solution on the structure characteristic of CdS thin films.The pH of the solution plays a vital role on the characteristic of the CdS thin films.The XRD patterns show that the change in the pH of the solution results in the change in crystal phase from predominant hexagonal phase to predominant cubic phase.The CdS thin films with the two different crystal phases have different influences on CIGS thin film solar cells.The crystal mismatch and the interface state density of the c-CdS(cubic phase CdS) and CIGS are about 1 419% and 8 507×10 12cm -2 respectively,and those of the h-CdS(hexagonal phase CdS) and CIGS are about 32 297% and 2 792×10 12cm -2 respectively.It is necessary for high efficiency CIGS thin film solar cells to deposit the cubic phase CdS thin films.展开更多
In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interf...In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interfacial layer with various thicknesses from 5 nm to 35 nm was deposited by DC magnetron sputtering. Comparative studies on TCO/CdS/CdTe and TCO/CdS/CdO/CdTe interfaces have been conducted by current-voltage, capacitance-voltage and admittance spectroscopy measurements. The current-voltage characteristics of the devices with an area of 0.45 cm<sup>2</sup> under 100 mW/cm<sup>2</sup> illumination, at the optimum thickness of CdO intermediate layer in the proposed structures, show increases of the short circuit current density and the open circuit voltage by 5% and 25%, respectively. The efficiency improvement of 3.1% of p-i-n cell over p-n cell is observed. Results of the temperature-dependent current-voltage and admittance measurements revealed the removing of the deep level defect with the activation energy of 0.43 eV and the reducing of the ideality factor from 1.9 to 1.8 via buffer/absorber interfacial passivation method. Interface passivation appears to be critical to improve the short circuit current density and the open circuit voltage, and CdO thin film is clearly effective for this purpose.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.
文摘Deposition and structural characteristics of cadmium sulfide (CdS) thin films by chemical bath deposition (CBD) technique from a bath containing thiourea,cadmium acetate,ammonium acetate and ammonia in an aqueous solution are reported.Researches are made on the influence of the fundamental parameters including pH,temperature,and concentrations of the solution involved in the chemical bath deposition of CdS and titration or dumping of the thiourea solution on the structure characteristic of CdS thin films.The pH of the solution plays a vital role on the characteristic of the CdS thin films.The XRD patterns show that the change in the pH of the solution results in the change in crystal phase from predominant hexagonal phase to predominant cubic phase.The CdS thin films with the two different crystal phases have different influences on CIGS thin film solar cells.The crystal mismatch and the interface state density of the c-CdS(cubic phase CdS) and CIGS are about 1 419% and 8 507×10 12cm -2 respectively,and those of the h-CdS(hexagonal phase CdS) and CIGS are about 32 297% and 2 792×10 12cm -2 respectively.It is necessary for high efficiency CIGS thin film solar cells to deposit the cubic phase CdS thin films.
文摘In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interfacial layer with various thicknesses from 5 nm to 35 nm was deposited by DC magnetron sputtering. Comparative studies on TCO/CdS/CdTe and TCO/CdS/CdO/CdTe interfaces have been conducted by current-voltage, capacitance-voltage and admittance spectroscopy measurements. The current-voltage characteristics of the devices with an area of 0.45 cm<sup>2</sup> under 100 mW/cm<sup>2</sup> illumination, at the optimum thickness of CdO intermediate layer in the proposed structures, show increases of the short circuit current density and the open circuit voltage by 5% and 25%, respectively. The efficiency improvement of 3.1% of p-i-n cell over p-n cell is observed. Results of the temperature-dependent current-voltage and admittance measurements revealed the removing of the deep level defect with the activation energy of 0.43 eV and the reducing of the ideality factor from 1.9 to 1.8 via buffer/absorber interfacial passivation method. Interface passivation appears to be critical to improve the short circuit current density and the open circuit voltage, and CdO thin film is clearly effective for this purpose.