The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the...The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.展开更多
With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectr...With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectronic synaptic devices have attracted much attention due to their advantages in sensing,memory and computing integration.In this work,via band structure engineering and heterostructure designing,a heterojunction optoelectronic synaptic device based on Cu doped with n-type SrTiO_(3)(Cu:STO)film combined with p-type CuAlO_(2)(CAO)thin film was fabricated.It is found surprisingly that the optoelectronic device based on Cu:STO/CAO p-n heterojunction exhibits a rapid response of 2 ms,and that it has a wideband response from visible to near-infrared(NIR)region.Additionally,a series of important synaptic functions,including excitatory postsynaptic current(EPSC),paired-pulse facilitation(PPF),shortterm potentiation(STP)to long-term potentiation(LTP)transition,learning experience behavior and image sharpening,have been successfully simulated on the device.More importantly,the performance of the device remains still stable and reliable after several months which were stored at room temperature and atmospheric pressure.Based on these advantages,the optoelectronic synaptic devices demonstrated here provide great potential in the new generation of artificial visual systems.展开更多
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030503) supported by Hi-Tech Research and Development Program of China
文摘The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.
基金financially supported by the National Science Funds for Excellent Young Scholars of China(No.61822106)the Natural Science Foundation of China(Nos.U19A2070,62074025)the National Key Research&Development Program(No.2020YFA0309200)。
文摘With the rapid development of science and technology,the emergence of new application scenarios,such as robots,driverless vehicles and smart city,puts forward high requirements for artificial visual systems.Optoelectronic synaptic devices have attracted much attention due to their advantages in sensing,memory and computing integration.In this work,via band structure engineering and heterostructure designing,a heterojunction optoelectronic synaptic device based on Cu doped with n-type SrTiO_(3)(Cu:STO)film combined with p-type CuAlO_(2)(CAO)thin film was fabricated.It is found surprisingly that the optoelectronic device based on Cu:STO/CAO p-n heterojunction exhibits a rapid response of 2 ms,and that it has a wideband response from visible to near-infrared(NIR)region.Additionally,a series of important synaptic functions,including excitatory postsynaptic current(EPSC),paired-pulse facilitation(PPF),shortterm potentiation(STP)to long-term potentiation(LTP)transition,learning experience behavior and image sharpening,have been successfully simulated on the device.More importantly,the performance of the device remains still stable and reliable after several months which were stored at room temperature and atmospheric pressure.Based on these advantages,the optoelectronic synaptic devices demonstrated here provide great potential in the new generation of artificial visual systems.