Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was...Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was synthesized through employing defective Ti0_(2) nanosheets as solid support for photo-catalytic water splitting.It indicated that the surface oxygen vacancies on defective Ti0_(2) nanosheets could effectively stabilize the single-atomic Pt sites through constructing a three-center Ti-Pt-Ti structure.The Ti-Pt-Ti structure can hold the stability of isolated single-atomic Pt sites and facilitate the separation and transfer of photoinduced charge carriers,thereby greatly improving the photocatalytic H2 evolution.Notably,our synthesized photocatalyst exhibited a remarkably enhanced H2 evolution performance,and the H2 production rate is up to 13460.7μmol h^(-1)·g^(-1),which is up to around 29.0 and 4.7 times higher than those of Ti0_(2) nanosheets and Pt nanoparticles-Ti0_(2).In addition,a plausible enhanced reaction mechanism was also proposed combining with photo-electrochemical characterizations and density functional theoiy(DFT)calculation results.Ultimately,it is believed that this work highlights the benefits of a single-site catalyst and paves the way to rationally design the highly active and stable single-atomic site photocatalysts on metal oxide support.展开更多
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ...Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.展开更多
The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these e...The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.展开更多
Web 2.0的出现使信息构建(IA)的内容发生了深刻变化,IA已进入"信息构建2.0"(IA2.0)阶段。在IA2.0阶段,IA作为一门学科、一种角色和一类社团的协调统一体而存在,它强调真正"以用户为中心"和"丰富的用户体验&qu...Web 2.0的出现使信息构建(IA)的内容发生了深刻变化,IA已进入"信息构建2.0"(IA2.0)阶段。在IA2.0阶段,IA作为一门学科、一种角色和一类社团的协调统一体而存在,它强调真正"以用户为中心"和"丰富的用户体验"的核心理念,以满足新环境下的用户需求。Web2.0网站的IA,是IA2.0的典型应用,也是IA2.0阶段研究的主要内容,本文将其称为网站IA2.0。文中设计了一个网站IA2.0模型,并进行了简单的实例分析。展开更多
Surface engineering and Cu valence regulation are essential factors in improving the C_(2)selectivity during the electrochemical reduction of CO_(2).Herein,we present a sea urchin-like CuO/Cu_(2)O catalyst derived fro...Surface engineering and Cu valence regulation are essential factors in improving the C_(2)selectivity during the electrochemical reduction of CO_(2).Herein,we present a sea urchin-like CuO/Cu_(2)O catalyst derived from rhombic dodecahedra Cu_(2)O through one-step oxidation/etching method where the mixed Cu^(+)/Cu^(0)states are formed via in situ reduction during electrocatalysis.The combined effects of the morphology and the mixed Cu^(+)/Cu^(0)states on C–C coupling are evaluated by the Faradaic efficiency of C_(2)and the C_(2)/C1 ratio obtained in an H-cell.R-Cu^(O)/Cu_(2)O exhibited 49.5%Faradaic efficiency of C_(2)with a C_(2)/C1 ratio of 3.1 at−1.4 V vs.reversible hydrogen electrode,which are 1.5 and 3.2 times higher than those of R-Cu_(2)O,respectively.Using a flow-cell,68.0%Faradaic efficiency of C_(2)is achieved at a current density of 500 mA·cm^(−2).The formation of the mixed Cu^(+)/Cu^(0)states was confirmed by in situ Raman spectra.Additionally,the sea urchin-like structure provides more active sites and enables faster electron transfer.As a result,the excellent C_(2)production on R-CuO/Cu_(2)O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu^(+)/Cu^(0)states.Therefore,this work presents an integrated strategy for developing Cu-based electrocatalysts for C_(2)production through electrochemical CO_(2)reduction.展开更多
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
基金This research was funded by the Canadian Centre for Clean Coal/Carbon and Mineral Processing Technologies(C5MPT),the National Key R&D Program of China(2017YFB0310803)and the China Scholarship Council(CSC).We thank the NanoFAB at the University of Alberta for the convenience of instruments use,and the kindly help of Nanqi Duan and Chao Qi on sample characterization.
文摘Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was synthesized through employing defective Ti0_(2) nanosheets as solid support for photo-catalytic water splitting.It indicated that the surface oxygen vacancies on defective Ti0_(2) nanosheets could effectively stabilize the single-atomic Pt sites through constructing a three-center Ti-Pt-Ti structure.The Ti-Pt-Ti structure can hold the stability of isolated single-atomic Pt sites and facilitate the separation and transfer of photoinduced charge carriers,thereby greatly improving the photocatalytic H2 evolution.Notably,our synthesized photocatalyst exhibited a remarkably enhanced H2 evolution performance,and the H2 production rate is up to 13460.7μmol h^(-1)·g^(-1),which is up to around 29.0 and 4.7 times higher than those of Ti0_(2) nanosheets and Pt nanoparticles-Ti0_(2).In addition,a plausible enhanced reaction mechanism was also proposed combining with photo-electrochemical characterizations and density functional theoiy(DFT)calculation results.Ultimately,it is believed that this work highlights the benefits of a single-site catalyst and paves the way to rationally design the highly active and stable single-atomic site photocatalysts on metal oxide support.
基金financially supported by the National Science Foundation of China(Grant No.11804106)。
文摘Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
文摘The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.
基金supported by the National Natural Science Foundation of China(Grant No.22178266).
文摘Surface engineering and Cu valence regulation are essential factors in improving the C_(2)selectivity during the electrochemical reduction of CO_(2).Herein,we present a sea urchin-like CuO/Cu_(2)O catalyst derived from rhombic dodecahedra Cu_(2)O through one-step oxidation/etching method where the mixed Cu^(+)/Cu^(0)states are formed via in situ reduction during electrocatalysis.The combined effects of the morphology and the mixed Cu^(+)/Cu^(0)states on C–C coupling are evaluated by the Faradaic efficiency of C_(2)and the C_(2)/C1 ratio obtained in an H-cell.R-Cu^(O)/Cu_(2)O exhibited 49.5%Faradaic efficiency of C_(2)with a C_(2)/C1 ratio of 3.1 at−1.4 V vs.reversible hydrogen electrode,which are 1.5 and 3.2 times higher than those of R-Cu_(2)O,respectively.Using a flow-cell,68.0%Faradaic efficiency of C_(2)is achieved at a current density of 500 mA·cm^(−2).The formation of the mixed Cu^(+)/Cu^(0)states was confirmed by in situ Raman spectra.Additionally,the sea urchin-like structure provides more active sites and enables faster electron transfer.As a result,the excellent C_(2)production on R-CuO/Cu_(2)O is primarily attributed to the synergistic effects of the sea urchin-like structure and the stable mixed Cu^(+)/Cu^(0)states.Therefore,this work presents an integrated strategy for developing Cu-based electrocatalysts for C_(2)production through electrochemical CO_(2)reduction.
基金supported by the National Key Research and Development Project(2018YFB1502401 and 2018YFA0702002)the Program for Changjiang Scholars and Innovation Research Team in the University(IRT1205)+1 种基金the Fundamental Research Funds for the Central Universitiesthe long-term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China。