Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it...Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it on the surface of filamentous bacteriophage fd. Phosphorylation in vitro by cAPK showed a unique labelled band of approximately 60 ku, which was consistent with the molecular weight of the PKS-g3p fusion protein. Some weakly phosphorylated bands for both PKS phage and wild-type phage were also observed. Phage display random 15-mer peptide library phosphorylated by cAPK was selected with ferric (Fe3+ ) chelalion affinity resin. After 4 rounds of screening, phage clones were picked out to determine the displayed peptide sequences by DNA sequencing. The results showed that 5 of 14 sequenced phages displayed the cAPK recognition sequence motif (R)RXS/T. Their in vitro phosphorylation analyses revealed the specific labelled bands corresponding to the positive PKS phages with and without the typical (R)RXS/T sequence motif. It suggested that the new method of using ferric (Fe 3+ ) chelation affinity chromatography to identify the substrate specificity of protein kinase from random peptide library was feasible.展开更多
文摘Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it on the surface of filamentous bacteriophage fd. Phosphorylation in vitro by cAPK showed a unique labelled band of approximately 60 ku, which was consistent with the molecular weight of the PKS-g3p fusion protein. Some weakly phosphorylated bands for both PKS phage and wild-type phage were also observed. Phage display random 15-mer peptide library phosphorylated by cAPK was selected with ferric (Fe3+ ) chelalion affinity resin. After 4 rounds of screening, phage clones were picked out to determine the displayed peptide sequences by DNA sequencing. The results showed that 5 of 14 sequenced phages displayed the cAPK recognition sequence motif (R)RXS/T. Their in vitro phosphorylation analyses revealed the specific labelled bands corresponding to the positive PKS phages with and without the typical (R)RXS/T sequence motif. It suggested that the new method of using ferric (Fe 3+ ) chelation affinity chromatography to identify the substrate specificity of protein kinase from random peptide library was feasible.