在应变速率为0.1、0.01、0.001s^(-1)和变形温度400、450、500℃条件下采用热模拟试验机对Al-11.5Si-1.6Mg-3.5Cu合金进行了等温热压缩试验,并采用动态材料模型(Dynamic Material Modeling, DMM)绘制材料的热加工图,预测了所设计的钎料...在应变速率为0.1、0.01、0.001s^(-1)和变形温度400、450、500℃条件下采用热模拟试验机对Al-11.5Si-1.6Mg-3.5Cu合金进行了等温热压缩试验,并采用动态材料模型(Dynamic Material Modeling, DMM)绘制材料的热加工图,预测了所设计的钎料合金Al-11.5Si-1.6Mg-3.5Cu与芯材铝合金AA3003的变形机制,从而得到钎料合金和芯材合金共同适合的加工窗口,避免复合轧制过程中出现材料开裂、变形不匹配等问题,缩短试验时间。试验结果表明,当变形温度在400~500℃,应变速率范围为0.001s^(-1)~0.1s^(-1),Al-11.5Si-1.6Mg-3.5Cu合金与芯材合金AA3003在高温变形时不会出现失稳现象,并且在较高的温度和较低的应变速率下比较适合材料的成形加工。展开更多
基金support from the National Science Foundation of China (No.51971249)the Natural Science Foundation of Shandong Province,China (No.ZR2020KE012)the Science and Technology Planning Project of Longkou City,China (No.2021KJJH025).
基金the project of the Czech Science Foundation (No.20-19170S)the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG))for financial support within the scope of project (No.SCHA 1484/46-1).
文摘在应变速率为0.1、0.01、0.001s^(-1)和变形温度400、450、500℃条件下采用热模拟试验机对Al-11.5Si-1.6Mg-3.5Cu合金进行了等温热压缩试验,并采用动态材料模型(Dynamic Material Modeling, DMM)绘制材料的热加工图,预测了所设计的钎料合金Al-11.5Si-1.6Mg-3.5Cu与芯材铝合金AA3003的变形机制,从而得到钎料合金和芯材合金共同适合的加工窗口,避免复合轧制过程中出现材料开裂、变形不匹配等问题,缩短试验时间。试验结果表明,当变形温度在400~500℃,应变速率范围为0.001s^(-1)~0.1s^(-1),Al-11.5Si-1.6Mg-3.5Cu合金与芯材合金AA3003在高温变形时不会出现失稳现象,并且在较高的温度和较低的应变速率下比较适合材料的成形加工。