Al-cladded Al-Zn-Mg-Cu sheets were compressed up to70%reduction on a Gleeble-3500thermo-mechanical simulatorwith temperatures ranging from380to450°C at strain rates between0.1and30s-1.The microstructures of the A...Al-cladded Al-Zn-Mg-Cu sheets were compressed up to70%reduction on a Gleeble-3500thermo-mechanical simulatorwith temperatures ranging from380to450°C at strain rates between0.1and30s-1.The microstructures of the Al cladding and theAl-Zn-Mg-Cu matrix were characterized by electron back-scattered diffraction(EBSD)and X-ray diffraction(XRD).Themicrostructure is closely related to the level of recovery and recrystallization,which can be influenced by deformation temperature,deformation pass and deformation rate.The level of recovery and recrystallization are different in the Al cladding and theAl-Zn-Mg-Cu matrix.Higher deformation temperature results in higher degree of recrystallization and coarser grain size.Staticrecrystallization and recovery can happen during the interval of deformation passes.Higher strain rate leads to finer sub-grains atstrain rate below10s-1;however,dynamic recovery and recrystallization are limited at strain rate of30s-1due to shorter duration atelevated temperatures.展开更多
基金Projects(2016YFB0300901,2016YFB0700401) supported by the National Key Research and Development Program of ChinaProjects(106112015CDJXY130003,106112015CDJXZ138803) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-cladded Al-Zn-Mg-Cu sheets were compressed up to70%reduction on a Gleeble-3500thermo-mechanical simulatorwith temperatures ranging from380to450°C at strain rates between0.1and30s-1.The microstructures of the Al cladding and theAl-Zn-Mg-Cu matrix were characterized by electron back-scattered diffraction(EBSD)and X-ray diffraction(XRD).Themicrostructure is closely related to the level of recovery and recrystallization,which can be influenced by deformation temperature,deformation pass and deformation rate.The level of recovery and recrystallization are different in the Al cladding and theAl-Zn-Mg-Cu matrix.Higher deformation temperature results in higher degree of recrystallization and coarser grain size.Staticrecrystallization and recovery can happen during the interval of deformation passes.Higher strain rate leads to finer sub-grains atstrain rate below10s-1;however,dynamic recovery and recrystallization are limited at strain rate of30s-1due to shorter duration atelevated temperatures.