In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy u...In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.展开更多
Shot peening is a surface modification technology with the metal surface nano machine(SNC),which can modify the surface microstructure and extend the fatigue life of Cu-19Ni alloy.The hardness,damage evolution and mec...Shot peening is a surface modification technology with the metal surface nano machine(SNC),which can modify the surface microstructure and extend the fatigue life of Cu-19Ni alloy.The hardness,damage evolution and mechanical properties were investigated and characterized by scanning electron microscope(SEM),laser confocal microscope(LSM)and material surface performance tester(CFT).The results showed that the surface roughness and friction coefficient of Cu-19Ni alloy decreased with the increase of shot peening duration and diameter,while the microhardness and strength increased.Moreover,with the increase in shot peening duration and diameter,SEM observation showed that the fracture dimples became smaller,meanwhile,with the increase of small cleavage planes,shear tearing ridges and the thickness of the surface nano layer,the fracture mode gradually evolved from plastic to brittle fracture.The uniaxial tensile test of shot peened Cu-19Ni alloy was carried out by MTS testing machine combined with digital image correlation technology(DIC).The evolution of Cu-19Ni surface damage was analyzed,and the evolution equations describing the damage of large deformation zone and small deformation zone were established.The effect of shot peening on the damage evolution behavior of Cu-19Ni alloy was revealed.展开更多
Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show...Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.展开更多
Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed wit...Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.展开更多
Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range...Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.展开更多
The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of th...The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
The microstructures of spinodal phases in Cu-15Ni-8Sn alloy were studied by TEM. It was found that when the alloy is completely in a as-quenched state, spinodal decomposition is quick. Ordering appears after spinodal ...The microstructures of spinodal phases in Cu-15Ni-8Sn alloy were studied by TEM. It was found that when the alloy is completely in a as-quenched state, spinodal decomposition is quick. Ordering appears after spinodal decomposition. The ordered phase with DO22 structure has three variants obtained from coarsening spinodal structure. The reason of ordering appeared after spinodal decomposition is that the content of solute atoms needed by ordering is higher than the average, which can be reached by the composition fluctuation of spinodal decomposition. It was speculated that the morphology of the ordered phase is needle-like.展开更多
Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were inve...Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...展开更多
The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transitio...The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.展开更多
The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides...The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.展开更多
Implanting 1 ×1016 to1 ×1017 Co+/cm2 into Ni85 Fe15 alloy film anditschangesof mag netoresistantcharacters were researched . The results show that Co+ is very spectacular on modifying Ni85 Fe15 alloyfilm...Implanting 1 ×1016 to1 ×1017 Co+/cm2 into Ni85 Fe15 alloy film anditschangesof mag netoresistantcharacters were researched . The results show that Co+ is very spectacular on modifying Ni85 Fe15 alloyfilm’s magnetoresistancecharacters. Atlower dose,theanisotrop ic magnetoresistivity ratio( AMR) and thesaturated magnetic field didn’tchange almost. ATmedium dose, the saturated magnetic field does not have great change either, butits AMRisraised from 1 % upto 3% . Thisiscomparabletothebest AMRvalueof permalloy based magnetoresistant material prepared by other methods. But the ion implantation tech niqueisrathersimpler. Whentheimplanting doseishigher,its AMRisalsoenhanced notice ably. However,theincreaseof saturated field saysthe material’sstructurecharacters have changed radically.展开更多
Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively...Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively investigated.The results suggest that LPBF Cu-15Ni-8Sn alloy exhibits superior corrosion re-sistance than the conventional casting counterpart and their corrosion behavior is highly associated with Sn segregation.Generally,a triple-layer film will be formed on the surface of LPBF Cu-15Ni-8Sn alloy when being exposed to 3.5 wt%NaCl solution.To be more detailed,the abundance of nanoscale Sn-rich precipitates at the molten pool boundaries promotes the initial formation of a thick inner layer,where Ni and Sn tend to be distributed at inner and outer positions of the layer,respectively.In contrast,the inner layer on molten pools is much thinner ascribed to a lower Sn content,facilitating the earlier nucleation and growth of a compact middle layer that is mainly composed of numerous Cu-rich nanoparticles.At the outmost position,CuO,Cu(OH)_(2) and Ni(OH)_(2) constitute the major composition of the loose layer.The results of this study could contribute to the optimal design and processing of additively manufactured Cu-Ni-Sn alloys.展开更多
Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measure...Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measurements and electrochemical impedance spectroscopy and non-electrochemical techniques (scanning Electron Microscopy (SEM)) studied surface morphology has been used to characterize electrode surface. This study permitted to follow the evolution of the inhibitory effect of some azoles, on Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia and indicate that the tested inhibitors act as a good mixed-type inhibitor retarding the anodic and cathodic reactions. An increase of the inhibitors concentration leads to a decrease of corrosion rate and inhibition efficiency increase.展开更多
The microstructures and mechanical properties of the directionally solidified Cu-15Ni-8Sn alloy were investigated at solidification rates ranging from 100 to 3000μm/s.The results showed that the solidification rate s...The microstructures and mechanical properties of the directionally solidified Cu-15Ni-8Sn alloy were investigated at solidification rates ranging from 100 to 3000μm/s.The results showed that the solidification rate significantly affects the phase distribution of the as-cast Cu-15Ni-8Sn alloy.The primary and secondary dendritic spacing reduces and eventually becomes stable as the solidification rate increases.Meanwhile,the size of the primary phase decreases,and its distribution becomes more uniform.The most severe segregation problem of this alloy has been greatly improved.Upon solidification at 100μm/s,the as-cast Cu-15Ni-8Sn alloy consists of the α-Cu matrix,γ-CuNi_(2)Sn phase,discontinuous precipitation structure,modulated structure,and DO_(22) ordered phases.However,as the solidification rate increases,the discontinuous precipitation structure,modulated structures,and DO_(22) ordered phases decrease and even disappear,reducing hardness.As the solidification rate increases,after homogenization treatment,the composition and microhardness distributions of Cu-15Ni-8Sn alloy become more uniform.The time for homogenization is also shortened.It reduces production energy usage and facilitates further mechanical processing.展开更多
文摘In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.
基金Funded by Natural Science Foundation of the Inner Mongolia(Nos.2019MS01015,2019MS01017)National Natural Science Foundation of China(No.11002065)。
文摘Shot peening is a surface modification technology with the metal surface nano machine(SNC),which can modify the surface microstructure and extend the fatigue life of Cu-19Ni alloy.The hardness,damage evolution and mechanical properties were investigated and characterized by scanning electron microscope(SEM),laser confocal microscope(LSM)and material surface performance tester(CFT).The results showed that the surface roughness and friction coefficient of Cu-19Ni alloy decreased with the increase of shot peening duration and diameter,while the microhardness and strength increased.Moreover,with the increase in shot peening duration and diameter,SEM observation showed that the fracture dimples became smaller,meanwhile,with the increase of small cleavage planes,shear tearing ridges and the thickness of the surface nano layer,the fracture mode gradually evolved from plastic to brittle fracture.The uniaxial tensile test of shot peened Cu-19Ni alloy was carried out by MTS testing machine combined with digital image correlation technology(DIC).The evolution of Cu-19Ni surface damage was analyzed,and the evolution equations describing the damage of large deformation zone and small deformation zone were established.The effect of shot peening on the damage evolution behavior of Cu-19Ni alloy was revealed.
基金Project(2015A030312003) supported by the Guangdong Natural Science Foundation for Research Team,China
文摘Effect of Si and Ti on dynamic recrystallization(DRX)of Cu-15Ni-8 Sn alloy was studied using hot compression tests over deformation temperature range of 750-950℃and strain rate range of 0.001-10 s^-1.The results show that the dynamic recrystallization behavior during hot deformation is significantly affected by the trace elements of Si and Ti.The addition of Si and Ti promotes the formation of Ni16Si7Ti6 particles during hot deformation,which promotes the nucleation of dynamic recrystallization by accelerating the transition from low-angle boundaries(LABs)to high-angle boundaries(HABs).Ni16Si7Ti6 particles further inhibit the growth of recrystallized grains through the pinning effect.Based on the dynamic recrystallization behavior,a processing map of the alloy is built up to obtain the optimal processing parameters.Guided by the processing map,a hot-extruded Cu-15 Ni-8Sn alloy with a fine-grained microstructure is obtained,which shows excellent elongation of 30%and ultimate tensile strength of 910 MPa.
基金Project (2016YFB0301400) supported by the National Key Research and Development Program of ChinaProject (9140A12040515QT48167) supported by the Pre-research Fund of the General Armaments Department of ChinaProject (CSU20151024) supported by the Innovation-driven Plan of Central South University,China
文摘Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.
基金Projects(2017YFB0306105,2018YFE0306100)supported by the National Key Research and Development Program of China
文摘Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.
文摘The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
文摘The microstructures of spinodal phases in Cu-15Ni-8Sn alloy were studied by TEM. It was found that when the alloy is completely in a as-quenched state, spinodal decomposition is quick. Ordering appears after spinodal decomposition. The ordered phase with DO22 structure has three variants obtained from coarsening spinodal structure. The reason of ordering appeared after spinodal decomposition is that the content of solute atoms needed by ordering is higher than the average, which can be reached by the composition fluctuation of spinodal decomposition. It was speculated that the morphology of the ordered phase is needle-like.
基金Project Financially supported by Major State Basic Research Development Program of China (2007CB616903)
文摘Cu-30Ni-xRE(x=0–0.213 wt.%) alloy was prepared by adding rare earths(RE) in melted Cu-30Ni alloy using metal mould casting method.The effects of RE on corrosion resistance of the alloy in simulated seawater were investigated using optical microscope,scanning electronic microscope with energy-dispersive spectrometer and electrochemical measurement system.The results showed that the corrosion resistance of Cu-30Ni alloy was greatly improved by adding proper amount of RE,whereas excess addition of RE worsened ...
文摘The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.
文摘The intergranular carbides may significantly increase rupture life and ductility of the Fe-15Cr-25Ni alloy.This seems due to the grain boundary sliding and diffusion hindered by precipitation of intergranular carbides,so the nucleation and growth rate of cracks or cavities are reduced.
文摘Implanting 1 ×1016 to1 ×1017 Co+/cm2 into Ni85 Fe15 alloy film anditschangesof mag netoresistantcharacters were researched . The results show that Co+ is very spectacular on modifying Ni85 Fe15 alloyfilm’s magnetoresistancecharacters. Atlower dose,theanisotrop ic magnetoresistivity ratio( AMR) and thesaturated magnetic field didn’tchange almost. ATmedium dose, the saturated magnetic field does not have great change either, butits AMRisraised from 1 % upto 3% . Thisiscomparabletothebest AMRvalueof permalloy based magnetoresistant material prepared by other methods. But the ion implantation tech niqueisrathersimpler. Whentheimplanting doseishigher,its AMRisalsoenhanced notice ably. However,theincreaseof saturated field saysthe material’sstructurecharacters have changed radically.
基金financially supported by the National Natural Science Foundation of China(No.51901018)Young Elite Scientists Sponsorship Program by China Association for Science and Tech-nology(YESS,No.2019QNRC001)+3 种基金the Fundamental Research Funds for the Central Universities(No.FRF-AT-20-07,06500119)the Nat-ural Science Foundation of Beijing Municipality(No.2212037)the National Science and Technology Resources Investigation Program of China(No.2019FY101400)the National Natural Science Foundation of China(No.52104368).
文摘Corrosion resistance of laser powder bed fusion(LPBF)Cu-15Ni-8Sn alloys is crucial towards its practical application in marine engineering.In this work,corrosion behavior of LPBF Cu-15Ni-8Sn alloy was com-prehensively investigated.The results suggest that LPBF Cu-15Ni-8Sn alloy exhibits superior corrosion re-sistance than the conventional casting counterpart and their corrosion behavior is highly associated with Sn segregation.Generally,a triple-layer film will be formed on the surface of LPBF Cu-15Ni-8Sn alloy when being exposed to 3.5 wt%NaCl solution.To be more detailed,the abundance of nanoscale Sn-rich precipitates at the molten pool boundaries promotes the initial formation of a thick inner layer,where Ni and Sn tend to be distributed at inner and outer positions of the layer,respectively.In contrast,the inner layer on molten pools is much thinner ascribed to a lower Sn content,facilitating the earlier nucleation and growth of a compact middle layer that is mainly composed of numerous Cu-rich nanoparticles.At the outmost position,CuO,Cu(OH)_(2) and Ni(OH)_(2) constitute the major composition of the loose layer.The results of this study could contribute to the optimal design and processing of additively manufactured Cu-Ni-Sn alloys.
文摘Some azoles were tested such as 3-amino-1,2,4-triazole (ATA), 3-4’-bitriazole -1,2,4 (BiTA)and 2-Mercaptobenzimidazole (MBI) against Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia using potentiodynamic measurements and electrochemical impedance spectroscopy and non-electrochemical techniques (scanning Electron Microscopy (SEM)) studied surface morphology has been used to characterize electrode surface. This study permitted to follow the evolution of the inhibitory effect of some azoles, on Cu-30Ni alloy corrosion in 3%NaCl polluted by ammonia and indicate that the tested inhibitors act as a good mixed-type inhibitor retarding the anodic and cathodic reactions. An increase of the inhibitors concentration leads to a decrease of corrosion rate and inhibition efficiency increase.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0714400)Science and Technology Projects of Jiangxi Provincial Department of Education(Grant Nos.GJ210843 and GJJ200873)+2 种基金Scientific Research Starting Foundation for Advanced Talents of Jiangxi University of Science and Technology(Grant No.205200100570)the Project of the Key Scientific and Technological of Jiangxi Province(Grant No.20181BCB19003)Ningbo Enterprise Innovation Consortium Special Project(Grant No.2021H003).
文摘The microstructures and mechanical properties of the directionally solidified Cu-15Ni-8Sn alloy were investigated at solidification rates ranging from 100 to 3000μm/s.The results showed that the solidification rate significantly affects the phase distribution of the as-cast Cu-15Ni-8Sn alloy.The primary and secondary dendritic spacing reduces and eventually becomes stable as the solidification rate increases.Meanwhile,the size of the primary phase decreases,and its distribution becomes more uniform.The most severe segregation problem of this alloy has been greatly improved.Upon solidification at 100μm/s,the as-cast Cu-15Ni-8Sn alloy consists of the α-Cu matrix,γ-CuNi_(2)Sn phase,discontinuous precipitation structure,modulated structure,and DO_(22) ordered phases.However,as the solidification rate increases,the discontinuous precipitation structure,modulated structures,and DO_(22) ordered phases decrease and even disappear,reducing hardness.As the solidification rate increases,after homogenization treatment,the composition and microhardness distributions of Cu-15Ni-8Sn alloy become more uniform.The time for homogenization is also shortened.It reduces production energy usage and facilitates further mechanical processing.