Catalytic upgrading of bio-ethanol to 1,3-butadiene(1,3-BD,ETB)is a renewable and low-carbon technology for the bulk chemical production.Exploring robust catalysts and getting in-depth understanding of the relationshi...Catalytic upgrading of bio-ethanol to 1,3-butadiene(1,3-BD,ETB)is a renewable and low-carbon technology for the bulk chemical production.Exploring robust catalysts and getting in-depth understanding of the relationship between the structure of catalytic sites and reaction selectivity are of great significance for ETB process applications.In this study,we constructed a robust Cu-Zr/SiO_(2) catalyst by an ammonia evaporation and post-impregnation method.Over the optimal 2%Cu-8%Zr/SiO_(2) catalyst,superior performance of 69.6%1,3-BD selectivity and 71.2%ethanol conversion were obtained.Systematic characterizations revealed that three types of Cu-Zr-Si active sites were probably constructed on the Cu-8%Zr/SiO_(2) catalysts as varying the Cu loadings from 0.5 to 20%,affording greatly different activity and selectivity in the ETB process.The 1,3-BD productivity over the(SiO)_(2)(CuO)Zr-OH sites was 8.2 and 77.2 times higher than that of(CuO)_(2)-Zr-(OSi)2 and Cu-(O)_(2)-Zr-(OSi)2 sites,respectively,attributed to the high activities and good balance among the reactions of dehydrogenation,aldol condensation,and MPVO reduction.展开更多
Interaction mechanism of the collector,2-mercaptobenzothiazole(MBT),with chalcopyrite and sphalerite surfaces were investigated by Fourier transform infrared(FTIR) and density functional theory,Results of FTIR sho...Interaction mechanism of the collector,2-mercaptobenzothiazole(MBT),with chalcopyrite and sphalerite surfaces were investigated by Fourier transform infrared(FTIR) and density functional theory,Results of FTIR showed that some characteristic peaks of MBT were observed on the chalcopyrite surface,including C=N,C=N-S and C-S stretching vibration peaks,and the adsorption product was CuMBT.But there were no characteristic peaks of MBT on the sphalerite surface.The thione molecular form of MBT was the most efficient and stable,N and exocyclic S were the more favourable reactive sites for nucleophilic attacked by metal atoms.Compared with ZnS(110),MBT is more readily adsorbed on CuFeS2(112).Attachment of MBT occurs due to strong bonding through exocyclic S p and s orbits with Cu d orbit on CuFeS2(112) and electron transfer from Cu atom to S atom.Under the vacuum condition,MBT in the form of thione molecular cannot be adsorbed on ZnS(110) spontaneously.展开更多
The geometry of 2-mercaptobenzothiazole (MBT) and its tautomeric form of benzothiazole-2-thione are optimized at B3LYP/6-311 G** and HF/6-311 G** levels, respectively. The crystal structure of benzothiazole-2-th...The geometry of 2-mercaptobenzothiazole (MBT) and its tautomeric form of benzothiazole-2-thione are optimized at B3LYP/6-311 G** and HF/6-311 G** levels, respectively. The crystal structure of benzothiazole-2-thione and its FFIR spectra are also obtained. From the calculated and experimental data, it can be concluded that in gas-phase and solid-state, the real existing form of 2-mercaptobenzothiazole is the thione-form of MBT.展开更多
Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-trans...Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct,) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.展开更多
We investigated the effect of the 2-mercaptobenzothiazole concentration on the sour-corrosion behavior of API X60 pipeline steel in an environment containing H_(2)S at 25°C and in the presence of 0,2.5,5.0,7.5,an...We investigated the effect of the 2-mercaptobenzothiazole concentration on the sour-corrosion behavior of API X60 pipeline steel in an environment containing H_(2)S at 25°C and in the presence of 0,2.5,5.0,7.5,and 10.0 g/L of 2-mercaptobenzothiazole inhibitor.To examine this behavior,we conducted open-circuit potential(OCP),potentiodynamic polarization,and electrochemical impedance spectroscopy(EIS)tests.Energy dispersive spectroscopy and scanning electron microscopy were also used to analyze the corrosion products.The results of the OCP and potentiodynamic polarization tests revealed that 2-mercaptobenzothiazole reduces the speed of both the anodic and cathodic reactions.An assessment of the Gibbs free energy of the inhibitor(△G_(ads)^(■))indicated that its value was less than-20 kJ·mol^(-1)and greater than-40 k J·mol^(-1).Therefore,the adsorption of 2-mercaptobenzothiazole onto the surface of the API X60 pipeline steel occurs both physically and chemically,the latter of which is particularly intentional.In addition,as the△G_(ads)^(■)dsvalue was negative,we could conclude that the adsorption of 2-mercaptobenzothiazole onto the surface of the pipeline steel occurs spontaneously.The EIS results indicate that with the increase in the 2-mercaptobenzothiazole inhibitor concentration,the corrosion resistance of API X60 steel increases.An analysis of the corrosion products revealed that iron sulfide compounds form on the surface.In summary,the results showed that an increase in the inhibitor concentration results in a decrease in the corrosion rate and an increase in inhibitory efficiency.Additionally,we found that the 2-mercaptobenzothiazole adsorption process on the API X60 steel surfaces in an H2 S-containing environment follows the Langmuir adsorption isotherm and occurs spontaneously.展开更多
The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
基金supported by Fundamental Research Program of Shanxi Province(202203021221303)Science and Technology Major Project of Shanxi Province(202005D121002)The Central Project Guide Local Science and Technology for Development(2020SW26)。
基金supported by the National Natural Science Foundation of China(21721004,22108274)“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21060200).
文摘Catalytic upgrading of bio-ethanol to 1,3-butadiene(1,3-BD,ETB)is a renewable and low-carbon technology for the bulk chemical production.Exploring robust catalysts and getting in-depth understanding of the relationship between the structure of catalytic sites and reaction selectivity are of great significance for ETB process applications.In this study,we constructed a robust Cu-Zr/SiO_(2) catalyst by an ammonia evaporation and post-impregnation method.Over the optimal 2%Cu-8%Zr/SiO_(2) catalyst,superior performance of 69.6%1,3-BD selectivity and 71.2%ethanol conversion were obtained.Systematic characterizations revealed that three types of Cu-Zr-Si active sites were probably constructed on the Cu-8%Zr/SiO_(2) catalysts as varying the Cu loadings from 0.5 to 20%,affording greatly different activity and selectivity in the ETB process.The 1,3-BD productivity over the(SiO)_(2)(CuO)Zr-OH sites was 8.2 and 77.2 times higher than that of(CuO)_(2)-Zr-(OSi)2 and Cu-(O)_(2)-Zr-(OSi)2 sites,respectively,attributed to the high activities and good balance among the reactions of dehydrogenation,aldol condensation,and MPVO reduction.
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject(502042012)supported by the Postdoctoral Research Station of Central South University,ChinaProject supported by Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘Interaction mechanism of the collector,2-mercaptobenzothiazole(MBT),with chalcopyrite and sphalerite surfaces were investigated by Fourier transform infrared(FTIR) and density functional theory,Results of FTIR showed that some characteristic peaks of MBT were observed on the chalcopyrite surface,including C=N,C=N-S and C-S stretching vibration peaks,and the adsorption product was CuMBT.But there were no characteristic peaks of MBT on the sphalerite surface.The thione molecular form of MBT was the most efficient and stable,N and exocyclic S were the more favourable reactive sites for nucleophilic attacked by metal atoms.Compared with ZnS(110),MBT is more readily adsorbed on CuFeS2(112).Attachment of MBT occurs due to strong bonding through exocyclic S p and s orbits with Cu d orbit on CuFeS2(112) and electron transfer from Cu atom to S atom.Under the vacuum condition,MBT in the form of thione molecular cannot be adsorbed on ZnS(110) spontaneously.
基金This work was supported by the Natural Science Foundation of Shandong Province (No.Y2002B06)
文摘The geometry of 2-mercaptobenzothiazole (MBT) and its tautomeric form of benzothiazole-2-thione are optimized at B3LYP/6-311 G** and HF/6-311 G** levels, respectively. The crystal structure of benzothiazole-2-thione and its FFIR spectra are also obtained. From the calculated and experimental data, it can be concluded that in gas-phase and solid-state, the real existing form of 2-mercaptobenzothiazole is the thione-form of MBT.
文摘Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct,) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.
文摘We investigated the effect of the 2-mercaptobenzothiazole concentration on the sour-corrosion behavior of API X60 pipeline steel in an environment containing H_(2)S at 25°C and in the presence of 0,2.5,5.0,7.5,and 10.0 g/L of 2-mercaptobenzothiazole inhibitor.To examine this behavior,we conducted open-circuit potential(OCP),potentiodynamic polarization,and electrochemical impedance spectroscopy(EIS)tests.Energy dispersive spectroscopy and scanning electron microscopy were also used to analyze the corrosion products.The results of the OCP and potentiodynamic polarization tests revealed that 2-mercaptobenzothiazole reduces the speed of both the anodic and cathodic reactions.An assessment of the Gibbs free energy of the inhibitor(△G_(ads)^(■))indicated that its value was less than-20 kJ·mol^(-1)and greater than-40 k J·mol^(-1).Therefore,the adsorption of 2-mercaptobenzothiazole onto the surface of the API X60 pipeline steel occurs both physically and chemically,the latter of which is particularly intentional.In addition,as the△G_(ads)^(■)dsvalue was negative,we could conclude that the adsorption of 2-mercaptobenzothiazole onto the surface of the pipeline steel occurs spontaneously.The EIS results indicate that with the increase in the 2-mercaptobenzothiazole inhibitor concentration,the corrosion resistance of API X60 steel increases.An analysis of the corrosion products revealed that iron sulfide compounds form on the surface.In summary,the results showed that an increase in the inhibitor concentration results in a decrease in the corrosion rate and an increase in inhibitory efficiency.Additionally,we found that the 2-mercaptobenzothiazole adsorption process on the API X60 steel surfaces in an H2 S-containing environment follows the Langmuir adsorption isotherm and occurs spontaneously.
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.