The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of...The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.展开更多
Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The hom...Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The homogeneity of microstructure of cold closed-die forged gears can highly affect their service performance. The homogeneity of microstructure and Vickers hardness in cold closed-die forged gear of 20 Cr Mn Ti alloy is comprehensively studied by using optical microscopy and Vickers hardness tester. The results show that the distribution homogeneity of the aspect ratio of grain and Vickers hardness is the same. In the circumferential direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous and they gradually decrease from the surface to the center of the tooth. In the radial direction, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous on the surface of the gear tooth; while it is relatively homogeneous in the center of the gear tooth. In the axial direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is relatively homogeneous from the small-end to the large-end of the gear tooth.展开更多
Copper alloy is widely used in high-speed railway,aerospace and other fields due to its excellent electrical conductivity and mechanical properties.High speed deformation and dynamic loading under impact load is a com...Copper alloy is widely used in high-speed railway,aerospace and other fields due to its excellent electrical conductivity and mechanical properties.High speed deformation and dynamic loading under impact load is a complex service condition,which widely exists in the field of national defense,military and industrial application.Therefore,the dynamic deformation behavior of the Cu-20Ag alloy was investigated by Split Hopkinson Pressure Bar(SHPB)with the strain rates of 1000-25000 s^(-1),high-speed hydraulic servo material testing machine with the strain rates of 1-500 s^(-1).The effect of strain rate on flow stress and adiabatic shear sensitivity was analyzed.The results show that the increase of strain rate will increase the flow stress and critical strain,that is to say,the increase of strain rate will reduce the adiabatic shear sensitivity of the Cu-20Ag alloy.The Cu-Ag interface has obvious orientation relationship with;(111)_(Cu)//(111)_(Ag):(^(-)111)_(Cu)//(^(-)111)_(Ag):(^(-)200)_(Cu)//(^(-)200)_(Ag) and [0^(-)11]_(Cu)//[0^(-)11]_(Ag) with the increase of strain rate.The increase of strain rate promotes the precipitation of Ag and increases the number of interfaces in the microstructure,which hinders the movement of dislocations and improves the stress and yield strength of the Cu-20Ag alloy.The concentration and distribution density of dislocations and the precipitation of Ag were the main reasons improve the flow stress and yield strength of the Cu-20Ag alloy.展开更多
基金National Natural Science Foundation of China !under grant 59671060
文摘The oxidation behavior of sputtered Ni-3Cr-20Al coating at 900℃ in air was investigated. A dense Al2O3 layer was formed on the sputtered Ni-3Cr-20AI coating after 200 h oxidation. However, owing to the segregation of Ni3Al during oxidation process at high temperature, the spinel NiAI2O4 was also formed in the Al2O3 layer. It was found that the formation of NiAI204 had no detrimental effect on the oxidation resistance of the sputtered N?3O-20AI coating due to the excellent adhesion shown by the Al2O3 and NiAl2O4complex oxide scale.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2013M531750)supported by China Postdoctoral Science Foundation
文摘Cold closed-die forging is a suitable process to produce spur-bevel gears due to its advantages, such as saving materials and time, reducing costs, increasing die life and improving the quality of the product. The homogeneity of microstructure of cold closed-die forged gears can highly affect their service performance. The homogeneity of microstructure and Vickers hardness in cold closed-die forged gear of 20 Cr Mn Ti alloy is comprehensively studied by using optical microscopy and Vickers hardness tester. The results show that the distribution homogeneity of the aspect ratio of grain and Vickers hardness is the same. In the circumferential direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous and they gradually decrease from the surface to the center of the tooth. In the radial direction, the distribution of the aspect ratio of grain and Vickers hardness is inhomogeneous on the surface of the gear tooth; while it is relatively homogeneous in the center of the gear tooth. In the axial direction of the gear tooth, the distribution of the aspect ratio of grain and Vickers hardness is relatively homogeneous from the small-end to the large-end of the gear tooth.
基金financially supported by the Innovation Leading Project of Henan Province (No. 191110210400)the Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 19A430012)+3 种基金the Luoyang Science and Technology Major Project (No. 1901006A)the Henan Outstanding Talents Innovation Fund (182101510003)National Key R&D Plan (No. 2016YFB0301400)National Key R&D Plan (No.2017YFB0306400)
文摘Copper alloy is widely used in high-speed railway,aerospace and other fields due to its excellent electrical conductivity and mechanical properties.High speed deformation and dynamic loading under impact load is a complex service condition,which widely exists in the field of national defense,military and industrial application.Therefore,the dynamic deformation behavior of the Cu-20Ag alloy was investigated by Split Hopkinson Pressure Bar(SHPB)with the strain rates of 1000-25000 s^(-1),high-speed hydraulic servo material testing machine with the strain rates of 1-500 s^(-1).The effect of strain rate on flow stress and adiabatic shear sensitivity was analyzed.The results show that the increase of strain rate will increase the flow stress and critical strain,that is to say,the increase of strain rate will reduce the adiabatic shear sensitivity of the Cu-20Ag alloy.The Cu-Ag interface has obvious orientation relationship with;(111)_(Cu)//(111)_(Ag):(^(-)111)_(Cu)//(^(-)111)_(Ag):(^(-)200)_(Cu)//(^(-)200)_(Ag) and [0^(-)11]_(Cu)//[0^(-)11]_(Ag) with the increase of strain rate.The increase of strain rate promotes the precipitation of Ag and increases the number of interfaces in the microstructure,which hinders the movement of dislocations and improves the stress and yield strength of the Cu-20Ag alloy.The concentration and distribution density of dislocations and the precipitation of Ag were the main reasons improve the flow stress and yield strength of the Cu-20Ag alloy.