The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffracti...The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.展开更多
The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)...The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.展开更多
Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed wit...Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) charac...The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.展开更多
The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of th...The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.展开更多
The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. ...The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. The results exhibit that aging temperatures influence the distribution of α2 phase precipitated and cause the changes in growth speed of α2 phase. For various aging temperatures, the time to finish precipitation of α2 phase is different. The facts that various distribution characteristics and growth speed of α2 ordered phase are caused by changed aging condition imply optimal selection and control for precipitation of α2 ordered phase reachable. Some discussions on adoptable aging steps are presented.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transitio...The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.展开更多
The development of magnesium alloys was limited due to the low absolute strength and poor corrosion resistance. It was found that the optimal performance could not be achieved in some alloys by a single quenching and ...The development of magnesium alloys was limited due to the low absolute strength and poor corrosion resistance. It was found that the optimal performance could not be achieved in some alloys by a single quenching and aging treatment, but could be achieved after a graded aging or multiple-stage aging heat treatment. The Mg97Zn1Y2 alloy was prepared and subjected to single and double aging treatments. Single aging was carried out at 250 ℃ for 6 to 15 h. For double aging, the first step was performed the same as the single aging. The second step was performed at 350 ℃ for 12 h. The microstructure and properties of the alloy with single and double aging were analyzed by means of hardness measurement, optical microscopy, scanning electron microscopy, X-ray diffraction, and polarization curve measurements. Results show that the precipitated nanoscale phases are formed during aging, and evenly distributed in the matrix. Compared with the single aging treatment, the hardness and corrosion resistance of the alloy are further improved due to the double aging treatment.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron m...The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP) resistance in T3 condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR) decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.展开更多
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ...The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.展开更多
A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensil...A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li) phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ″/θ′(Al2Cu) phase for 2A97 alloy treated by a triple-aging of a retrogression and re-aging treatment in the following order: (1) at 165℃×30 min, (2) at 220 ℃ or 240℃ × 15 min, (3) at 165℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165℃ in T6 temper.展开更多
基金Project(2009BAE71B00) supported by the National Key Technology R&D Program during the Eleventh Five-Year Plan Period
文摘The microstructures of as-extruded and stabilizing heat-treated Zn-10Al-2Cu-0.02Ti alloys were observed by scanning electron microscopy,transmission electron microscopy,electron probe microanalysis and X-ray diffraction analysis techniques.The change in structure after heat treatment and its effects on room temperature creep behavior were investigated by creep experiments at constant stress and slow strain rate tensile tests.The results show that after stabilizing heat treatment((350℃,30 min,water-cooling)+(100℃,12 h,air-cooling)),the amount of α+η lamellar structure decreases,while the amount of cellular and granular structure increases.The heat-treated Zn-10Al-2Cu-0.02Ti alloy exhibits better creep resistance than the as-extruded alloy,and the rate of steady state creep decreases by 96.9% after stabilizing heat treatment.
基金Projects (2010CB731700,2012CB619500) supported by the National Basic Research Program of China
文摘The influence of Li addition on mechanical property and aging precipitation behavior of Al-3.5Cu-1.5Mg alloy was investigated by tensile test,scanning electron microscopy(SEM),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM).The results show that the tensile strength can be significantly improved with the slightly decreased ductility and the form of fracture morphology is converted from ductile fracture into ductile/britde mixed fracture by adding 1.0%Li.Besides,the peak aging time at 185 ℃ is delayed from 12 to 24 h and the main precipitation phase S(Al2CuMg) is converted into S'(Al2CuMg)+δ(Al3Li),while the formation of S'(Al2CuMg) is delayed.
基金Project (2016YFB0301400) supported by the National Key Research and Development Program of ChinaProject (9140A12040515QT48167) supported by the Pre-research Fund of the General Armaments Department of ChinaProject (CSU20151024) supported by the Innovation-driven Plan of Central South University,China
文摘Cu-15Ni-8Sn-0.3Nb alloy rods were prepared by means of powder metallurgy followed by hot extrusion.Element maps obtained by electron probe micro analyzer(EPMA)showed that Nb-rich phases were formed and distributed within grains and at grain boundaries of the Cu-15Ni-8Sn-0.3Nb alloy.Transmission electron microscope(TEM)results indicated that there was no obvious orientation relationship between these phases and the matrix.Spinodal decomposition and ordering transformation appeared at early stages of aging at400°C and caused significant strengthening.Cu-15Ni-8Sn-0.3Nb alloy exhibited both higher strength(ultimate tensile strength>1030MPa)and higher tensile ductility(elongation>9.1%)than Cu-15Ni-8Sn alloy after aging treatment.The improvement was caused by Nb-rich phases at grain boundaries which led o the refinement of grain size and postponed the growth of discontinuous precipitates during aging.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Project(2016YFB0300901) supported by the National Key R&D Program of China Project(51421001) supported by the National Natural Science Foundation of China Project(2018CDJDCL0019) supported by the Fundamental Research Funds for the Central Universities, China
文摘The precipitation behaviors of an A1-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 ~C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 ~C, the amount of g' (A13Li), GP zones/0' (A12Cu) and Z (A15Cu6Li2) phases is obviously higher than that of T1 (A12CuLi) precipitates; while the samples peak aged at 160 and 200 ~C are usually dominated by T1 phase with a minor fraction of GP zones/0' and g', and the Z phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 ~C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 ~C. Correspondingly, the possible reasons for such phenomena are discussed.
文摘The ageing behavior of the mechanically alloyed Cu-15Ni-8Sn alloy has been studied. Compared with the alloys prepared by casting and rapid solidification, the modulation structure developed during ageing process of those prepared by mechanical alloying is finer and much more uniform, which leads to a higher peak hardness. However, their spinodal decomposition temperature are almost the same. Cold deformation prior to ageing not only accelerates the ageing process but also increases the peak hardness of the alloy.
文摘The characteristic of the precipitation and growth of α2 ordered phase during aging treatment in near α Ti alloys have been investigated in terms of the influences of aging temperature, aging time and aging manner. The results exhibit that aging temperatures influence the distribution of α2 phase precipitated and cause the changes in growth speed of α2 phase. For various aging temperatures, the time to finish precipitation of α2 phase is different. The facts that various distribution characteristics and growth speed of α2 ordered phase are caused by changed aging condition imply optimal selection and control for precipitation of α2 ordered phase reachable. Some discussions on adoptable aging steps are presented.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
文摘The microstrueture in shape memory alloy Cu—14Al—4Ni aged for two years at room temper- ature has been studied,and the substructure slow change has been observed.The domains of highly ordered phase and the transition regions appear at grain boundaries,the twin bounda- ries damage.Furthermore,the microstructure also gives the appearance and growth of antiphase domains like rectangular network.The long period antiphuse boundary structures and the antiphase domains have bee.observed first at the single diffracted vector .The con- centration gradient of solute atom Al has heen found from the matrixes to the grain bounda- ries,the matrixe is poor in Al and the grain boundaries are rich in Al.
基金financially supported by the National Natural Science Foundation of China(Grant No.51665012)the Jiangxi Province Science Foundation for Outstanding Scholarship(Grant Nos.20171BCB23061,2018ACB21020)
文摘The development of magnesium alloys was limited due to the low absolute strength and poor corrosion resistance. It was found that the optimal performance could not be achieved in some alloys by a single quenching and aging treatment, but could be achieved after a graded aging or multiple-stage aging heat treatment. The Mg97Zn1Y2 alloy was prepared and subjected to single and double aging treatments. Single aging was carried out at 250 ℃ for 6 to 15 h. For double aging, the first step was performed the same as the single aging. The second step was performed at 350 ℃ for 12 h. The microstructure and properties of the alloy with single and double aging were analyzed by means of hardness measurement, optical microscopy, scanning electron microscopy, X-ray diffraction, and polarization curve measurements. Results show that the precipitated nanoscale phases are formed during aging, and evenly distributed in the matrix. Compared with the single aging treatment, the hardness and corrosion resistance of the alloy are further improved due to the double aging treatment.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
基金Project(2005CB623705) supported by the National Basic Research Program of China
文摘The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP) resistance in T3 condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR) decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.
基金Project (BK2010392) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject (3212000502) supported by the Innovation Foundation of Southeast University,China
文摘The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.
基金"973" Key Project of Chinese National Programs for Fundamental Research and Development (2005CB623705)
文摘A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li) phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ″/θ′(Al2Cu) phase for 2A97 alloy treated by a triple-aging of a retrogression and re-aging treatment in the following order: (1) at 165℃×30 min, (2) at 220 ℃ or 240℃ × 15 min, (3) at 165℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165℃ in T6 temper.