Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the a...Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.展开更多
The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.A...The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.After 15 h milling,the average W grain size in the powders is decreased to 120 nm.For the powders milled for 15 h,the density,hardness and transverse rupture strength of the alloys sintered only by an intensive pulse electric current are the maximum.When the total sintering time keeps constant,the properties of the sintered alloys can be obviously improved by optimizing the sintering time of pulse-and constant-currents.A bulk ultrafine alloy with an average W grain size of about 340 nm can be obtained by sintering 15 h-milled powders in a total sintering time of 6 min.The corresponding sintered density,hardness and transverse rupture strength reach 16.78 g /cm3,HRA84.3 and 968 MPa,respectively.展开更多
Fine-grained W-Ni-Mn-YOalloys were fabricated by mechanical alloying-assisted spark plasma sintering(SPS), and the effects of YOcontent on the microstructure and mechanical properties of the alloys were studied. Fine-...Fine-grained W-Ni-Mn-YOalloys were fabricated by mechanical alloying-assisted spark plasma sintering(SPS), and the effects of YOcontent on the microstructure and mechanical properties of the alloys were studied. Fine-grained 90 W-6 Ni-4 Mn-YOalloys with uniform microstructure and excellent properties were prepared by SPS at 1150 ℃. The addition of trace YOinhibited the sintering densification process and refined the W grain size. The average W grain size decreased from 5.5 μm to 2.1 μm.The fracture mode changed from W grain transgranular fracture and W-W interface fracture to W-W and W-Matrix phase interface fracture. The Rockwell hardness and bending strength of alloys initially increased and then decreased with increasing YOcontent. The optimum comprehensive mechanical properties(Rockwell hardness and bending strength) of the alloys were obtained at the same time when the mass fraction of YOwas 0.4%.展开更多
In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-d...In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.展开更多
基金Foundation item:Project(51865012)supported by the National Natural Science Foundation of ChinaProject(2016005)supported by the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China+2 种基金Project(GJJ170372)supported by the Science Foundation of Educational Department of Jiangxi Province,ChinaProject(JCKY2016603C003)supported by the GF Basic Research Project,ChinaProject(JPPT125GH038)supported by the Research Project of Special Furnishment and Part,China
文摘Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.
基金Project(2007CB616905) supported by the National Basic Research Program of ChinaProject(2007AA03Z112) supported by the National High-tech Research and Development Program of China+1 种基金Project(x2jqB6080210) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(9140A18040709JW1601) supported by the Advanced Research Fund of Department of Defense,China
文摘The microstructure and properties of the 93W-4Ni-2Co-1Fe(mass fraction,%) tungsten heavy alloys prepared by mechanical alloying and electric current activated sintering from mixed elemental powders were investigated.After 15 h milling,the average W grain size in the powders is decreased to 120 nm.For the powders milled for 15 h,the density,hardness and transverse rupture strength of the alloys sintered only by an intensive pulse electric current are the maximum.When the total sintering time keeps constant,the properties of the sintered alloys can be obviously improved by optimizing the sintering time of pulse-and constant-currents.A bulk ultrafine alloy with an average W grain size of about 340 nm can be obtained by sintering 15 h-milled powders in a total sintering time of 6 min.The corresponding sintered density,hardness and transverse rupture strength reach 16.78 g /cm3,HRA84.3 and 968 MPa,respectively.
基金Project supported by the National Natural Science Foundation of China(51464010,51461014)the Natural Science Foundation of Hainan Province(20165207)
文摘Fine-grained W-Ni-Mn-YOalloys were fabricated by mechanical alloying-assisted spark plasma sintering(SPS), and the effects of YOcontent on the microstructure and mechanical properties of the alloys were studied. Fine-grained 90 W-6 Ni-4 Mn-YOalloys with uniform microstructure and excellent properties were prepared by SPS at 1150 ℃. The addition of trace YOinhibited the sintering densification process and refined the W grain size. The average W grain size decreased from 5.5 μm to 2.1 μm.The fracture mode changed from W grain transgranular fracture and W-W interface fracture to W-W and W-Matrix phase interface fracture. The Rockwell hardness and bending strength of alloys initially increased and then decreased with increasing YOcontent. The optimum comprehensive mechanical properties(Rockwell hardness and bending strength) of the alloys were obtained at the same time when the mass fraction of YOwas 0.4%.
文摘In this research the effect of cerium dopingon corrosion behavior of Ni-10 Cu-11 Fe-6 Al(wt%) alloy as a novel inert anode in titanium electrolytic production was investigated. The samples, including un-doped and Ce-doped nickel-based alloys, were prepared using vacuum induction melting(VIM) process and then exposed to the electrolysis in molten calcium chloride at 900C at à1.6 V versus graphite reference electrode for different immersion time. The surface and cross-section of the samples were characterized using scanning electron microscopy(SEM), and their electrochemical behavior was investigated by electrochemical impedance spectroscopy(EIS). The results show that the un-doped samples have greater number of voids and porosities as compared to that of the 0.0064 wt% Ce-doped samples(as the optimum content of cerium in the alloy). Thus, the nickel-based alloy becomes less sensitive to the pitting by addition of cerium. The corrosion penetration depth reaches about 244 mm after 16 h of electrolysis in the un-doped sample, while was approximately 103 mm for the 0.0064 wt% Ce-doped sample, which is an indication that the corrosion penetration depth decreases by adding small amounts of Ce.