The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as ...The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.展开更多
A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the com...A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the composite billet had good surface quality, metallurgical bonding interface between brass and pure copper as well as elongation of 53.1%. Synergistic deformation degree between pure copper wire and brass cladding layer was high during drawing. With an increase of the total deformation amount, the plastic deformation of the pure copper wire reduced triangular arc gaps between the pure copper wires and the triangular arc gaps were fully filled at 50%. When the total deformation amount was increased to 63%, dislocation cells and microbands successively formed in the pure copper wire. In the brass cladding layer, planar dislocation networks, twins and shear bands formed successively, and the main deformation mechanisms were dislocation sliding, twinning and shear deformation. The tensile strength increased from 240 MPa of the composite billet to 519 MPa of the one with the deformation amount of 63%, but the elongation decreased from 53.1% to 3.2%. A process of solid/liquid continuous casting and composite forming→drawing can work as a new compact method to produce brass cladding pure copper stranded wire composite as railway through grounding wire.展开更多
A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum ...A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum theoretical value of gap size were studied and estimation equation was established. The experimental results show that the gap size is a key parameter for the continuous coating extrusion process. Its maximum value (Hmax) is 0.24 mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18 mm, the maximum of metal extrusion per unit of time and optimal coating speed could be obtained.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom s...An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom section although hollow composite insulators with high flexural strength are adopted.Since the standard retrofitting strategy by using stiffer supports cannot reduce stress responses,wire rope isolation is introduced.The optimal design of isolation considers both stress and displacement responses since the slenderness and composite material of insulators contribute to significant displacement.The results show that properly designed isolation can significantly reduce stress without excessive displacement responses.A larger radius configuration helps to improve the applicability of small stiffness isolators under high winds.When the isolation still cannot satisfy the requirement,smaller stiffness isolators with a larger radius,or isolators with increased loops and smaller radius,can be introduced to gain better energy dissipation capacity and effectiveness in response mitigation.Accordingly,a three-step design procedure is proposed to increase the damping force but fix the rotational stiffness of isolation.Hence,the application of wire rope isolation can be extended to UHV composite BPS with a low natural frequency,but conductors with enough redundancy should be used.展开更多
The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500...The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃展开更多
Composite structure materials were potential sensing elements for magnetic sensors due to Giant magnetoimpedance(GMI) effect. Two kinds of composite wires with different magnetic/non-magnetic structures were fabricate...Composite structure materials were potential sensing elements for magnetic sensors due to Giant magnetoimpedance(GMI) effect. Two kinds of composite wires with different magnetic/non-magnetic structures were fabricated by using electroless deposition methods and the magnetoimpedance properties were investigated. The maximum GMI ratio of 114% was acquired at 60 MHz in the composite wires with a ferromagnetic core, whereas, 116% of maximum GMI ratio was found in the composite wires with a conductive core at low frequency of 600 k Hz. These results exhibit that the GMI ratio reaches the maximum when magnetoresistance ratio ?R/R and magnetoinductance ratio ?X/X make the comparative contributions to the total magnetoimpedance(MI). The obvious GMI effect obtained in the composite wires with conductive core frequency may provide a candidate for applications in magnetic sensors, especially at low frequencies.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
The extrusion ratio is one of the key parameters for manufacturing the lead-glass fiber(Pb-GF)composite wire by coating extrusion.The effect of extrusion ratio on coating extrusion of Pb-GF composite wire was studied ...The extrusion ratio is one of the key parameters for manufacturing the lead-glass fiber(Pb-GF)composite wire by coating extrusion.The effect of extrusion ratio on coating extrusion of Pb-GF composite wire was studied by finite element numerical simulation with the use of the DEFOEM simulation software.The simulation result shows that the higher the extrusion ratio,the higher the effective stress that the glass fiber bears during extrusion.It is also observed that the extrusion force increases with the increase of the extrusion ratio.The extrusion experiment of Pb-GF composite wire reveals that extrusion ratio is changed by changing the quantity of glass fiber and composite diameter.The rule that increasing the extrusion ratio enhances the coating speed limit suggests that the load on the glass fiber increases with increasing extrusion ratio.Both the simulation and the extrusion experiments show that the extrusion force increases with increasing extrusion ratio.展开更多
Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the tempe...Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.展开更多
A new technology of using lead coated on glass fiber to produce continuous wire for battery of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was studied. Some new devices were made to improve the materia...A new technology of using lead coated on glass fiber to produce continuous wire for battery of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was studied. Some new devices were made to improve the material capability, and the technological parameters were determined. The relationships among different parameters in the new technology were discussed, especially the relationship between the coating speed and other parameters. The microstructure and tensile strength of the composite wire were also analyzed.展开更多
The technological parameters have important effects on molding process of lead-clad glass fiber composite wire. If the extrusion force, temperature and gap size are too large or small, a dead zone will form in the fro...The technological parameters have important effects on molding process of lead-clad glass fiber composite wire. If the extrusion force, temperature and gap size are too large or small, a dead zone will form in the front of the inlet mold orifice, and the continuous clad extrusion and coating speed will be influenced. Under the condition of equal flow, the maximum and minimum theoretical values of the extrusion force, temperature and gap size are studied. The results show that the gap size is a key parameter that affects the continuous clad extrusion and coating speed when the extrusion force and temperature are kept constant. The maximum value (H_ max) of gap size is 0.50mm and the minimum one (H_ min) is 0.12mm. At a gap size of 0.17mm or 0.29mm, the maximum of metal extrusion per unit time and optimal coating speed can be obtained when the extrusion temperature is 300℃ and the extrusion force is 450kN.展开更多
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre...Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.展开更多
Under the condition of equal flow, the maximum and minimum theoretical values of gap size were studied and an estimation equation was established for the clad extrusion of the brittle core cladded by plastic metal mat...Under the condition of equal flow, the maximum and minimum theoretical values of gap size were studied and an estimation equation was established for the clad extrusion of the brittle core cladded by plastic metal materials. The results show that the gap size is a key parameter for the continuous clad extrusion and the molding speed. Its maximum value (Hmax) is 0.24mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18mm, the maximum of metal extrusion per unit of time and the optimal coating speed can be obtained.展开更多
It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of sing...It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.展开更多
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ...We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.展开更多
The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's po...The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's potential response (detection limit, selectivity and response time). The chloride ISEs (ion selective electrodes) in this research were the solid membrane chloride ISEs based AgC1. There were two types of chloride ISEs that were developed, namely the chloride ISEs of coated wire and composite systems. Both types of electrodes were characterized. The selectivity was done by comparing Esel of the chloride standard solutions and Esel of the interference ions (Br- and I-). The measurement of chloride ions in water samples was done by using the coated wire chloride ISE, the composite chloride ISE and the Mohr method. We compared the result of the two chloride ISE methods to that of standard method for chloride determination (Mohr) by using F-test and Post Hoc Test LSD (least significant difference) and Duncan. Analysis by using F-test and Post Hoc Test (LSD and Duncan) and characterization results of both the methods showed that coated wire chloride ISE was more effective compared to composite chloride ISE. Nemstian response was 59.83 mV/decade, linier range measurement was 10-1-10-5 M, limit detection was 1.23 × 10-5 M, response time along was 25 s and interfering ion was 10-4 M Br-.展开更多
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
To obtain the compatible material of high hardness and high toughness,Hadfield steel matrix composites,reinforced by high-Cr cast iron bars made of flux-cored welding wires,which were inserted into the Hadfield steel ...To obtain the compatible material of high hardness and high toughness,Hadfield steel matrix composites,reinforced by high-Cr cast iron bars made of flux-cored welding wires,which were inserted into the Hadfield steel melt,were investigated.The mechanical properties of three materials,i e,composites for as-cast and quenching-water condition,as well as Hadfield steel,were compared.The results show that the alloy powder inside flux-cored welding wires can be melted by the heat capacity of Hadfield steel melt and solidify into high-Cr cast iron bars.The impact toughness of the composite for quenching-water condition is higher than that of the composite for as-cast condition and is lower than that of the Hadfield steel,but it can still meet the requirements of hardness and toughness in industrial application.Regardless of load variation,composite for quenching-water condition shows better wear resistance than those of the composite for as-cast condition and Hadfield steel.The modified fracture toughness and wear resistance of composites are attributed to not only the combining actions of Hadfield steel matrix and high-Cr cast iron bars,but also the effect of heat treatment.展开更多
The smart composite structure is introduced, which consists of inorganic and nonmetallic comPOsite and in which resistance strain wire sensor arrays are embedded and shape memory alloys (SMAs) are mounted on the surfa...The smart composite structure is introduced, which consists of inorganic and nonmetallic comPOsite and in which resistance strain wire sensor arrays are embedded and shape memory alloys (SMAs) are mounted on the surface during the manufacturing process. A two dimensional resistance strain wire sensor array can be used to detect changes in the mechanical strain distribution caused by subsequent damage to the structure. Self-adaptive and selfaliagnostic functions are achieved on a microcomputer using high speed parallel processors and neural network software. Results of the modeling and simulation predict a highly robust system with accurate determination of the damage location.展开更多
基金Project (09003) supported by the Open-Fund Research of State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,ChinaProject (JD0805) supported by the Science and Technology Innovation Team,Jiangsu University,China
文摘The influence of Ti-Si-Mg-AI wire on microstructure and mechanical properties of SiCp/A1 metal matrix composite joints produced by plasma arc in-situ weld-alloying was investigated. Argon-nitrogen mixture was used as plasma gas and Ti-Si-Mg-A1 flux-cored wires as filled composites. Weldments were submitted to tensile test. Meanwhile, the macro morphology and microstructure of the joints were examined. The result shows that the formation ofneedie-like harmful phase A14C3 is effectively inhibited and the wettability of molten pool is improved by adding Ti-Si-Mg-A1 flux-cored wires. With 15Ti-5Si-5Mg-A1 flux-cored wire as filled composite, the maximum tensile strength of the welded joint is 267 MPa, which is up to 83% that of the matrix composites under annealed condition.
基金Project(51104016)supported by the National Natural Science Foundation of ChinaProject(51925401)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(2019B10087)supported by Ningbo Science and Technology Innovation 2025 Major Project,China。
文摘A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the composite billet had good surface quality, metallurgical bonding interface between brass and pure copper as well as elongation of 53.1%. Synergistic deformation degree between pure copper wire and brass cladding layer was high during drawing. With an increase of the total deformation amount, the plastic deformation of the pure copper wire reduced triangular arc gaps between the pure copper wires and the triangular arc gaps were fully filled at 50%. When the total deformation amount was increased to 63%, dislocation cells and microbands successively formed in the pure copper wire. In the brass cladding layer, planar dislocation networks, twins and shear bands formed successively, and the main deformation mechanisms were dislocation sliding, twinning and shear deformation. The tensile strength increased from 240 MPa of the composite billet to 519 MPa of the one with the deformation amount of 63%, but the elongation decreased from 53.1% to 3.2%. A process of solid/liquid continuous casting and composite forming→drawing can work as a new compact method to produce brass cladding pure copper stranded wire composite as railway through grounding wire.
文摘A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum theoretical value of gap size were studied and estimation equation was established. The experimental results show that the gap size is a key parameter for the continuous coating extrusion process. Its maximum value (Hmax) is 0.24 mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18 mm, the maximum of metal extrusion per unit of time and optimal coating speed could be obtained.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金National Natural Science Foundation of China under Grant No.51878508National Key R&D Program of China under Grant No.2018YFC0809400。
文摘An ultra-high voltage(UHV)composite bypass switch(BPS)faces increasing seismic challenges when UHV projects extend to high seismic intensity areas.The UHV composite BPS still generates excessive stress at the bottom section although hollow composite insulators with high flexural strength are adopted.Since the standard retrofitting strategy by using stiffer supports cannot reduce stress responses,wire rope isolation is introduced.The optimal design of isolation considers both stress and displacement responses since the slenderness and composite material of insulators contribute to significant displacement.The results show that properly designed isolation can significantly reduce stress without excessive displacement responses.A larger radius configuration helps to improve the applicability of small stiffness isolators under high winds.When the isolation still cannot satisfy the requirement,smaller stiffness isolators with a larger radius,or isolators with increased loops and smaller radius,can be introduced to gain better energy dissipation capacity and effectiveness in response mitigation.Accordingly,a three-step design procedure is proposed to increase the damping force but fix the rotational stiffness of isolation.Hence,the application of wire rope isolation can be extended to UHV composite BPS with a low natural frequency,but conductors with enough redundancy should be used.
文摘The effect of different regimes of heat treatment on the tensile strength of SiC coated composite of C fibers reinforced Al wires has been investigated.Their tensile strength may increase under treatment either at 500℃ for 2h or 550℃ for 1h,but decrease over 600℃.After the strength tests of extracted fibers from composite wires,the SiC coating is an excellent protection to C fibers.EPMA and EDAX showed that the C/Al interface of the composite wires is stable under treatment below 600℃,but unstable at 650℃
基金Shanghai Automotive Science and Technology Development Foundation (SAISTDF/12-06)East China Normal University Program (78210142, 78210183)Shanghai Ocean University Program (A-2600-10-0054, B-5406-12-0012)
文摘Composite structure materials were potential sensing elements for magnetic sensors due to Giant magnetoimpedance(GMI) effect. Two kinds of composite wires with different magnetic/non-magnetic structures were fabricated by using electroless deposition methods and the magnetoimpedance properties were investigated. The maximum GMI ratio of 114% was acquired at 60 MHz in the composite wires with a ferromagnetic core, whereas, 116% of maximum GMI ratio was found in the composite wires with a conductive core at low frequency of 600 k Hz. These results exhibit that the GMI ratio reaches the maximum when magnetoresistance ratio ?R/R and magnetoinductance ratio ?X/X make the comparative contributions to the total magnetoimpedance(MI). The obvious GMI effect obtained in the composite wires with conductive core frequency may provide a candidate for applications in magnetic sensors, especially at low frequencies.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
文摘The extrusion ratio is one of the key parameters for manufacturing the lead-glass fiber(Pb-GF)composite wire by coating extrusion.The effect of extrusion ratio on coating extrusion of Pb-GF composite wire was studied by finite element numerical simulation with the use of the DEFOEM simulation software.The simulation result shows that the higher the extrusion ratio,the higher the effective stress that the glass fiber bears during extrusion.It is also observed that the extrusion force increases with the increase of the extrusion ratio.The extrusion experiment of Pb-GF composite wire reveals that extrusion ratio is changed by changing the quantity of glass fiber and composite diameter.The rule that increasing the extrusion ratio enhances the coating speed limit suggests that the load on the glass fiber increases with increasing extrusion ratio.Both the simulation and the extrusion experiments show that the extrusion force increases with increasing extrusion ratio.
基金Project(51101052) supported by the National Natural Science Foundation of China
文摘Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.
文摘A new technology of using lead coated on glass fiber to produce continuous wire for battery of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was studied. Some new devices were made to improve the material capability, and the technological parameters were determined. The relationships among different parameters in the new technology were discussed, especially the relationship between the coating speed and other parameters. The microstructure and tensile strength of the composite wire were also analyzed.
文摘The technological parameters have important effects on molding process of lead-clad glass fiber composite wire. If the extrusion force, temperature and gap size are too large or small, a dead zone will form in the front of the inlet mold orifice, and the continuous clad extrusion and coating speed will be influenced. Under the condition of equal flow, the maximum and minimum theoretical values of the extrusion force, temperature and gap size are studied. The results show that the gap size is a key parameter that affects the continuous clad extrusion and coating speed when the extrusion force and temperature are kept constant. The maximum value (H_ max) of gap size is 0.50mm and the minimum one (H_ min) is 0.12mm. At a gap size of 0.17mm or 0.29mm, the maximum of metal extrusion per unit time and optimal coating speed can be obtained when the extrusion temperature is 300℃ and the extrusion force is 450kN.
基金National Natural Science Foundation of China(Grant No.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01)。
文摘Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.
基金Project(2000 78) supported by the Key Science and Technology Project of Shandong Province
文摘Under the condition of equal flow, the maximum and minimum theoretical values of gap size were studied and an estimation equation was established for the clad extrusion of the brittle core cladded by plastic metal materials. The results show that the gap size is a key parameter for the continuous clad extrusion and the molding speed. Its maximum value (Hmax) is 0.24mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18mm, the maximum of metal extrusion per unit of time and the optimal coating speed can be obtained.
文摘It is important for the safety of transmission system to accurately calculate single-phase earth fault current distribution.Features of double sided elimination method were illustrated.Quantitative calculation of single-phase earth fault current distribution and case verification were accomplished by using the loop method.Influences of some factors,such as single-phase earth fault location and ground resistance of poles,on short-circuit current distribution were discussed.Results show that:1) results of the loop method conform to those of double sided elimination method;2) the fault location hardly influences macro-distribution of short-circuit current.However,current near fault location is evidently influenced;and 3) the short-circuit current distribution is not so sensitive to the ground resistance of poles.
基金Funded by the National Natural Science Foundation of China(No.51775068)。
文摘We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.
文摘The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's potential response (detection limit, selectivity and response time). The chloride ISEs (ion selective electrodes) in this research were the solid membrane chloride ISEs based AgC1. There were two types of chloride ISEs that were developed, namely the chloride ISEs of coated wire and composite systems. Both types of electrodes were characterized. The selectivity was done by comparing Esel of the chloride standard solutions and Esel of the interference ions (Br- and I-). The measurement of chloride ions in water samples was done by using the coated wire chloride ISE, the composite chloride ISE and the Mohr method. We compared the result of the two chloride ISE methods to that of standard method for chloride determination (Mohr) by using F-test and Post Hoc Test LSD (least significant difference) and Duncan. Analysis by using F-test and Post Hoc Test (LSD and Duncan) and characterization results of both the methods showed that coated wire chloride ISE was more effective compared to composite chloride ISE. Nemstian response was 59.83 mV/decade, linier range measurement was 10-1-10-5 M, limit detection was 1.23 × 10-5 M, response time along was 25 s and interfering ion was 10-4 M Br-.
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
基金Funded by the Research Center for lnnovation Engineering in Science and Technology,Shaan Xi Province,China (No.2007ZDGC-17)
文摘To obtain the compatible material of high hardness and high toughness,Hadfield steel matrix composites,reinforced by high-Cr cast iron bars made of flux-cored welding wires,which were inserted into the Hadfield steel melt,were investigated.The mechanical properties of three materials,i e,composites for as-cast and quenching-water condition,as well as Hadfield steel,were compared.The results show that the alloy powder inside flux-cored welding wires can be melted by the heat capacity of Hadfield steel melt and solidify into high-Cr cast iron bars.The impact toughness of the composite for quenching-water condition is higher than that of the composite for as-cast condition and is lower than that of the Hadfield steel,but it can still meet the requirements of hardness and toughness in industrial application.Regardless of load variation,composite for quenching-water condition shows better wear resistance than those of the composite for as-cast condition and Hadfield steel.The modified fracture toughness and wear resistance of composites are attributed to not only the combining actions of Hadfield steel matrix and high-Cr cast iron bars,but also the effect of heat treatment.
文摘The smart composite structure is introduced, which consists of inorganic and nonmetallic comPOsite and in which resistance strain wire sensor arrays are embedded and shape memory alloys (SMAs) are mounted on the surface during the manufacturing process. A two dimensional resistance strain wire sensor array can be used to detect changes in the mechanical strain distribution caused by subsequent damage to the structure. Self-adaptive and selfaliagnostic functions are achieved on a microcomputer using high speed parallel processors and neural network software. Results of the modeling and simulation predict a highly robust system with accurate determination of the damage location.