The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied b...The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.展开更多
Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing...Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing law, method of Mori-Tanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM). The results show stress in brazed beam is higher than that in base material. The maximal stress can be found in the interface of joint. And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p Ovol. % ) to 135.32 MPa ( Al2O3p 15vol. % ) when composition of titanium is 3wt% in the filler metal.展开更多
Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emiss...Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emission scanning electron microscope( FE-SEM) with energy dispersive spectrometer( EDS). Shear strength of Mo-Cu/Cr18-Ni8 lap joint was measured by electromechanical universal testing machine. An excellent Mo-Cu/Cr18-Ni8 joint with a shear strength of 155 MPa was achieved at 980 ℃ for 20 min. Brazed joint was mainly comprised of eutectic structure in the center of brazing seam,matrix structure and lump structure. Ni-Cu( Mo) and Ni-Fe solid solution were at the interface beside Mo-Cu composite and Cr18-Ni8 stainless steel,respectively. Shear fracture exhibited mixed ductile-brittle fracture feature with trans-granular fracture,ductile dimples and tearing edges. Fracture originated from the interface between brazing seam and Mo-Cu composite.展开更多
To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutect...To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutectic filler.The microstructure and mechanical properties of filler alloys and Cu/Al joints were investigated.The result indicated that the Al−Si−Ni−Cu filler alloys mainly consisted of Al(s,s),Al_(2)(Cu,Ni)and Si(s,s).The Al−10Si−2Ni−6Cu filler alloy exhibited relatively low solidus(521℃)and liquidus(577℃)temperature,good tensile strength(305.8 MPa)and fracture elongation(8.5%).The corresponding Cu/Al joint brazed using Al−10Si−2Ni−6Cu filler was mainly composed of Al_(8)(Mn,Fe)_(2)Si,Al_(2)(Cu,Ni)3,Al(Cu,Ni),Al_(2)(Cu,Ni)and Al(s,s),yielding a shear strength of(90.3±10.7)MPa.The joint strength was further improved to(94.6±2.5)MPa when the joint was brazed using the Al−10Si−2Ni−6Cu−0.2Er−0.2Zr filler alloy.Consequently,the(Cu,Ni,Zr,Er)-modified Al−Si filler alloy was suitable for obtaining high-quality Cu/Al brazed joints.展开更多
Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an...Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an S-4700 scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and an electron probe X-ray microanalyzer (EPMA). The structure of joint interface was identified by XRD (JDX-3530M). Meanwhile, the fracture paths of the joints were comprehensively studied. The results show that processing parameters, especially the brazing temperature, have a significant effect on the microstructure and mechanical properties of joints. The typical interface structure is SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+ TiZrNiCu/Ti(s.s)/TiZrNiCu+Ti(s.s)+Ti2(Cu,Ni)/TC4 from SiO2 glass ceramic to TC4 alloy side. Based on the mechanical property tests, the joints brazed at 880 ℃ for 5 rain has the maximum shear strength of 23 MPa.展开更多
In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melt...In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melting temperature was measured by differential scanning calorimetry(DSC),and the brazability of Ag-50Cu-5Ga alloy on copper and metallized copper/kovar were ascertained at 850℃under 1×10-4 Pa in this article.The microstructures of the filler metal and the joints have been analyzed by using scanning electron microscopy(SEM),equipped with an energy dispersive spectroscopy.The results show that vacuum brazing was success to join with copper or metallized copper/kovar using Ag-50Cu-5Ga filler and reliable joints were obtained.There were Ag-rich phase,Cu-rich phase and a fine eutectic structure of Ag-based solid solution and Cu-based solid solution in the copper joints and the width of brazing seam is about 60μm.The joints of kovar alloy to copper after surface nickel plating was composed of AgCu eutectic phase,Ag,Cu,Cu2Ga and CuNi2 phase.The tensile strength was 167 MPa and 150 MPa,respectively.The tensile results of joints show that the joint strengths were equivalent to the traditional brazing filler metals.展开更多
Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing ti...Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing time is 250-300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interracial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity/to of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=O.O821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.展开更多
The non-destructive testing of brazed joint in honeycomb structure with thin panel ( thickness : 0. 2 mm) was studied by ultrasonic C-scan method. Samples with different types of artificial defect were designed; th...The non-destructive testing of brazed joint in honeycomb structure with thin panel ( thickness : 0. 2 mm) was studied by ultrasonic C-scan method. Samples with different types of artificial defect were designed; the characteristic signal and the main parameters of the test were determined by the pre-experiment, and then parameters were optimized by orthogonal design, finally the optimum process was verified by a single panel sample. The multiple reflection echoes were chosen as the characteristic signal. The optimal C-scan results were achieved when the 20 MHz focus probe was used, and the pass band range for received signal were selected as 8 - 17. 5 MHz. The defects such as incomplete penetration and core damage can be detected with ultrasonic C-scan, and the detection accuracy can reach to 1 ram.展开更多
Brazing hard alloy to high strength steel, incomplete atomic diffusion and excessive brittle reaction product precipitation at the faying interface are usually suffered because of incomplete understanding the process ...Brazing hard alloy to high strength steel, incomplete atomic diffusion and excessive brittle reaction product precipitation at the faying interface are usually suffered because of incomplete understanding the process of the initial interface disappearing and diffusion layer forming and evolving. In this paper , hard alloy YG11C ( WC-11wt. %Co) and high strength steel 42CrMo were picked up as base metals and BCu64MnNi as filler metal to clarify the interfacial microstrncture evolution. The process parameters of dwell time were set as 30 s, 60 s, 120 s, and 300 s and braze temperature were set as 950 ℃, 970 ℃, 990 ℃, 1 010 ℃, the effect of which on the evolution of interfacial microstructure, tensile strength, integrated with fracture morphology analysis, were conducted. The results showed that increasing brazing temperature from 950 ℃ to 970 ℃, no signifwant difference existed in the joint interface, whereas brazed at 990 ℃, the binder phase erosion occurred, i. e. the liquid filler metal etched into Co binder phase of WC-Co base metal, which caused WC particles debonding from the base metal surface and formed an micro-anisotropic zone.. Increase temperature to 1 010 ℃, severe binder erosion happened so as to micropores appear. Through the parameters optimization, the tensile strength can reach to the maximum 589 MPa at temperature of 970 ℃. The dwell time showed similar effect on tensile strength because longer dwell time also caused erosion and porosity owing to long-time diffusion and reaction.展开更多
Alumina was joined with graphite by active metal brazing technique at 895,900,905,and 910 ℃ for 10 min in vacuum of0.67 mPa using Ti-Cu-Ag(68.8Ag-26.7Cu-4.5Ti;mass fraction,%) as filler material.The brazed samples ...Alumina was joined with graphite by active metal brazing technique at 895,900,905,and 910 ℃ for 10 min in vacuum of0.67 mPa using Ti-Cu-Ag(68.8Ag-26.7Cu-4.5Ti;mass fraction,%) as filler material.The brazed samples were thermal cycled between 30 and 600 ℃ and characterized.X-ray diffraction results show strong reaction between titanium and carbon as well as titanium and alumina.Scanning electron microscopy and helium leak tests show that the initial and thermal cycled brazed samples are devoid of cracks or anv other defects and hermeticity in nature.Brazing strength of the joints is found to be satisfactory.展开更多
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ...One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.展开更多
基金Project (2009GJC20040) supported by the Scientist and Technician Serve the Enterprise,MOST,China
文摘The mechanical properties and microstructural distribution of the Cu/A1 brazing joints formed by torch-brazing with different Zn-A1 filler metals were investigated. The microstructure of the Zn-A1 alloys was studied by optical microscopy and scanning electron microscopy, and the phase constitution of the Cu/A1 joints was analyzed by energy dispersion spectrometry. The results show that the spreading area of the Zn-A1 filler metals on the Cu and A1 substrates increases as the A1 content increases. The mechanical results indicate that the shear strength reaches a peak value of 88 MPa when A1 and Cu are brazed with Zn-15AI filler metal. Microhardness levels from HV122 to HV515 were produced in the three brazing seam regions corresponding to various microstructure features. The Zn- and Al-rich phases exist in the middle brazing seam regions. However, two interface layers, CuZn3 and A12Cu are formed on the Cu side when the A1 content in the filler metals is 2% and more than 15%, respectively. The relationship between intermetallic compounds on Cu side and Zn-xA1 filler metals was investigated.
基金The authors are grateful for Project 50075019 supported by Na-tional Natural Science Foundation of Chinafor financial support from the visiting scholar foundation of key lab.in university.
文摘Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing law, method of Mori-Tanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM). The results show stress in brazed beam is higher than that in base material. The maximal stress can be found in the interface of joint. And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p Ovol. % ) to 135.32 MPa ( Al2O3p 15vol. % ) when composition of titanium is 3wt% in the filler metal.
基金supported by Shandong Natural Science Foundation(ZR2015EM040)
文摘Mo-Cu composite and Cr18-Ni8 stainless steel were brazed with Ni-Cr-P filler metal in a vacuum of 10-4 Pa and a Mo-Cu/Cr18-Ni8 joint was obtained. Microstructure in Mo-Cu/Cr18-Ni8 joint was investigated by field-emission scanning electron microscope( FE-SEM) with energy dispersive spectrometer( EDS). Shear strength of Mo-Cu/Cr18-Ni8 lap joint was measured by electromechanical universal testing machine. An excellent Mo-Cu/Cr18-Ni8 joint with a shear strength of 155 MPa was achieved at 980 ℃ for 20 min. Brazed joint was mainly comprised of eutectic structure in the center of brazing seam,matrix structure and lump structure. Ni-Cu( Mo) and Ni-Fe solid solution were at the interface beside Mo-Cu composite and Cr18-Ni8 stainless steel,respectively. Shear fracture exhibited mixed ductile-brittle fracture feature with trans-granular fracture,ductile dimples and tearing edges. Fracture originated from the interface between brazing seam and Mo-Cu composite.
基金the financial support from the Primary Research&Development Plan of Zhejiang Province,China(No.2021C01178)the National MCF Energy R&D Program,China(No.2019YFE03100400)+1 种基金the National Natural Science Foundation of China(Nos.51705457,51975530,52005445,52175368)the Natural Science Foundation of Zhejiang Province,China(Nos.LQ21E050015,LQ21E050018).
文摘To design a promising Al−Si filler alloy with a relatively low melting-point,good strength and plasticity for the Cu/Al joint,the Cu,Ni,Zr and Er elements were innovatively added to modify the traditional Al−Si eutectic filler.The microstructure and mechanical properties of filler alloys and Cu/Al joints were investigated.The result indicated that the Al−Si−Ni−Cu filler alloys mainly consisted of Al(s,s),Al_(2)(Cu,Ni)and Si(s,s).The Al−10Si−2Ni−6Cu filler alloy exhibited relatively low solidus(521℃)and liquidus(577℃)temperature,good tensile strength(305.8 MPa)and fracture elongation(8.5%).The corresponding Cu/Al joint brazed using Al−10Si−2Ni−6Cu filler was mainly composed of Al_(8)(Mn,Fe)_(2)Si,Al_(2)(Cu,Ni)3,Al(Cu,Ni),Al_(2)(Cu,Ni)and Al(s,s),yielding a shear strength of(90.3±10.7)MPa.The joint strength was further improved to(94.6±2.5)MPa when the joint was brazed using the Al−10Si−2Ni−6Cu−0.2Er−0.2Zr filler alloy.Consequently,the(Cu,Ni,Zr,Er)-modified Al−Si filler alloy was suitable for obtaining high-quality Cu/Al brazed joints.
基金Project(50705022) supported by the National Natural Science Foundation of ChinaProject(HIT0804) supported by the Foundation of the National Key Laboratory of Precision Hot Processing of Metals,ChinaProject supported by Program of Excellent Team in Harbin Institute of Technology,China
文摘Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope (OM) and an S-4700 scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and an electron probe X-ray microanalyzer (EPMA). The structure of joint interface was identified by XRD (JDX-3530M). Meanwhile, the fracture paths of the joints were comprehensively studied. The results show that processing parameters, especially the brazing temperature, have a significant effect on the microstructure and mechanical properties of joints. The typical interface structure is SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr)+Ti2O+ TiZrNiCu/Ti(s.s)/TiZrNiCu+Ti(s.s)+Ti2(Cu,Ni)/TC4 from SiO2 glass ceramic to TC4 alloy side. Based on the mechanical property tests, the joints brazed at 880 ℃ for 5 rain has the maximum shear strength of 23 MPa.
基金the National Key R&D Program of China(Grant No.2017YFB0305702).
文摘In an attempt to develop low-silver brazing filler metals used for hermetic sealing materials in the vacuum interrupter industry,the ternary Ag-50Cu-5Ga low-silver vacuum brazing filler metal was investigated.The melting temperature was measured by differential scanning calorimetry(DSC),and the brazability of Ag-50Cu-5Ga alloy on copper and metallized copper/kovar were ascertained at 850℃under 1×10-4 Pa in this article.The microstructures of the filler metal and the joints have been analyzed by using scanning electron microscopy(SEM),equipped with an energy dispersive spectroscopy.The results show that vacuum brazing was success to join with copper or metallized copper/kovar using Ag-50Cu-5Ga filler and reliable joints were obtained.There were Ag-rich phase,Cu-rich phase and a fine eutectic structure of Ag-based solid solution and Cu-based solid solution in the copper joints and the width of brazing seam is about 60μm.The joints of kovar alloy to copper after surface nickel plating was composed of AgCu eutectic phase,Ag,Cu,Cu2Ga and CuNi2 phase.The tensile strength was 167 MPa and 150 MPa,respectively.The tensile results of joints show that the joint strengths were equivalent to the traditional brazing filler metals.
基金This research was financially supported by the National Natural Science Foundation of China(No.50325517).
文摘Brazing of Ti3Al alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing time is 250-300 s. Four kinds of reaction products were observed during the brazing of Ti3Al alloys with the filler metal Cu-P, i.e., Ti3Al phase with a small quantity of Cu (Ti3Al(Cu)) formed close to the Ti3Al alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3Al(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interracial structure of brazed Ti3Al alloys joints with the filler metal Cu-P is Ti3Al/Ti3Al(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3Al(Cu)/Ti3Al, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity/to of reaction layer TiCu+Cu3P in the brazed joints of Ti3Al alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=O.O821exp(-34421.59/T)t.Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3Al brazed.
文摘The non-destructive testing of brazed joint in honeycomb structure with thin panel ( thickness : 0. 2 mm) was studied by ultrasonic C-scan method. Samples with different types of artificial defect were designed; the characteristic signal and the main parameters of the test were determined by the pre-experiment, and then parameters were optimized by orthogonal design, finally the optimum process was verified by a single panel sample. The multiple reflection echoes were chosen as the characteristic signal. The optimal C-scan results were achieved when the 20 MHz focus probe was used, and the pass band range for received signal were selected as 8 - 17. 5 MHz. The defects such as incomplete penetration and core damage can be detected with ultrasonic C-scan, and the detection accuracy can reach to 1 ram.
基金This work was supported by the National Natural Science Foundation of China ( Grant No. 51475376 and No. 51575451 ) and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 109-QP-2014).
文摘Brazing hard alloy to high strength steel, incomplete atomic diffusion and excessive brittle reaction product precipitation at the faying interface are usually suffered because of incomplete understanding the process of the initial interface disappearing and diffusion layer forming and evolving. In this paper , hard alloy YG11C ( WC-11wt. %Co) and high strength steel 42CrMo were picked up as base metals and BCu64MnNi as filler metal to clarify the interfacial microstrncture evolution. The process parameters of dwell time were set as 30 s, 60 s, 120 s, and 300 s and braze temperature were set as 950 ℃, 970 ℃, 990 ℃, 1 010 ℃, the effect of which on the evolution of interfacial microstructure, tensile strength, integrated with fracture morphology analysis, were conducted. The results showed that increasing brazing temperature from 950 ℃ to 970 ℃, no signifwant difference existed in the joint interface, whereas brazed at 990 ℃, the binder phase erosion occurred, i. e. the liquid filler metal etched into Co binder phase of WC-Co base metal, which caused WC particles debonding from the base metal surface and formed an micro-anisotropic zone.. Increase temperature to 1 010 ℃, severe binder erosion happened so as to micropores appear. Through the parameters optimization, the tensile strength can reach to the maximum 589 MPa at temperature of 970 ℃. The dwell time showed similar effect on tensile strength because longer dwell time also caused erosion and porosity owing to long-time diffusion and reaction.
文摘Alumina was joined with graphite by active metal brazing technique at 895,900,905,and 910 ℃ for 10 min in vacuum of0.67 mPa using Ti-Cu-Ag(68.8Ag-26.7Cu-4.5Ti;mass fraction,%) as filler material.The brazed samples were thermal cycled between 30 and 600 ℃ and characterized.X-ray diffraction results show strong reaction between titanium and carbon as well as titanium and alumina.Scanning electron microscopy and helium leak tests show that the initial and thermal cycled brazed samples are devoid of cracks or anv other defects and hermeticity in nature.Brazing strength of the joints is found to be satisfactory.
文摘One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints.