Cu-1%Cr(mass fraction)and Cu-1%Cr-5%carbon nanotube(CNT)(mass fraction)nanocomposite powders were produced by mechanical alloying and consolidated by hot pressing.Then,nanocomposites were hot-rolled by the order of 50...Cu-1%Cr(mass fraction)and Cu-1%Cr-5%carbon nanotube(CNT)(mass fraction)nanocomposite powders were produced by mechanical alloying and consolidated by hot pressing.Then,nanocomposites were hot-rolled by the order of 50%reduction at 650°C.The structure and microstructure were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).Relative density,microhardness,thermal stability,electrical and wear properties were evaluated.Compared to the Cu-Cr sample,the relative density of Cu-Cr-CNT sample is greatly improved from 75%to near full density of 98%by hot rolling.Although electrical conductivity and microhardness increase in both Cu-Cr and Cu-Cr-CNT nanocomposites after hot rolling,the effect of hot rolling on the enhancement is more prominent in the presence of CNTs.The microhardness and electrical conductivity of hot-rolled Cu-Cr-CNT nanocomposite approach HV 175 and 68%(IACS),respectively.Also,hot rolling is more effective on thermal stability improvement of Cu-Cr-CNT nanocomposite compared to Cu-Cr composite.However,after hot rolling,both the friction coef?cient and wear loss of the Cu-Cr sample display higher reduction than those of Cu-Cr-CNT nanocomposite owing to different wear mechanisms.After hot rolling,friction coefficient and wear loss of Cu-Cr sample display variation of 25%and 62%,respectively.展开更多
The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron micr...The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.展开更多
基金the financial support of University of Tehran for this researchfinancial supports of Iran Nanotechnology Initiative Council
文摘Cu-1%Cr(mass fraction)and Cu-1%Cr-5%carbon nanotube(CNT)(mass fraction)nanocomposite powders were produced by mechanical alloying and consolidated by hot pressing.Then,nanocomposites were hot-rolled by the order of 50%reduction at 650°C.The structure and microstructure were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).Relative density,microhardness,thermal stability,electrical and wear properties were evaluated.Compared to the Cu-Cr sample,the relative density of Cu-Cr-CNT sample is greatly improved from 75%to near full density of 98%by hot rolling.Although electrical conductivity and microhardness increase in both Cu-Cr and Cu-Cr-CNT nanocomposites after hot rolling,the effect of hot rolling on the enhancement is more prominent in the presence of CNTs.The microhardness and electrical conductivity of hot-rolled Cu-Cr-CNT nanocomposite approach HV 175 and 68%(IACS),respectively.Also,hot rolling is more effective on thermal stability improvement of Cu-Cr-CNT nanocomposite compared to Cu-Cr composite.However,after hot rolling,both the friction coef?cient and wear loss of the Cu-Cr sample display higher reduction than those of Cu-Cr-CNT nanocomposite owing to different wear mechanisms.After hot rolling,friction coefficient and wear loss of Cu-Cr sample display variation of 25%and 62%,respectively.
基金Project(11YZ112)supported by Innovation Project of Shanghai Educational Committee in ChinaProject(J50503)supported by Shanghai Municipal Education Commission in China+1 种基金Project(10JC1411800)supported by Key Basic Research Project of Shanghai Committee of Science and Technology in ChinaProject(JWCXSL1101)supported by Shanghai Graduate Innovation Fund in China
文摘The vacuum medium-frequency induction melting technology was employed to prepare the Cu-15%Cr-0.24%Zr alloy. The scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to analyze the phase composition, morphology and structure of the alloy. The results reveal that the as-cast structure of the alloy consists of Cu matrix, Cr dendrite, eutectic Cr and Zr-rich phase. A large number of Cr-precipitated phases occur in the Cu matrix, and Cu5Zr particles can be found in the grain boundary of Cu matrix. The HRTEM images prove that there is a semi-coherent relationship between Cu5Zr and Cu matrix.