The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged wi...The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.展开更多
Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used...Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used to highlight the precipitation sequence and to calculate the stored energy,recrystallization temperature and activation energy after each ECAP pass.On another hand,electrical properties were correlated with the dislocation density.Results show that the stored energy increases upon increasing ECAP pass numbers,while the recrystallization temperature decreases significantly.展开更多
基金Project (2009AA03Z109) supported by the National High-tech Research and Development Program of ChinaProject (09zz98) supported by Key Research and Innovation Program from Shanghai Municipal Education Commission, ChinaProjects (09dz1206401, 09dz1206402) supported by Key Project from Science and Technology Commission of Shanghai Municipality, China
文摘The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.
文摘Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used to highlight the precipitation sequence and to calculate the stored energy,recrystallization temperature and activation energy after each ECAP pass.On another hand,electrical properties were correlated with the dislocation density.Results show that the stored energy increases upon increasing ECAP pass numbers,while the recrystallization temperature decreases significantly.