期刊文献+
共找到2,650篇文章
< 1 2 133 >
每页显示 20 50 100
Strength of deformation-processed Cu-Fe in-situ composites 被引量:1
1
作者 葛继平 赵红 姚再起 《中国有色金属学会会刊:英文版》 CSCD 2005年第3期553-559,共7页
The strength of the deformation-processed Cu-Fe in-situ composite was conducted by material test system(MTS). The results show that the strength increases with the increasing deformation strain and iron content,which ... The strength of the deformation-processed Cu-Fe in-situ composite was conducted by material test system(MTS). The results show that the strength increases with the increasing deformation strain and iron content,which is greater than that of the calculated value based on the rule of mixture. The mechanism of strengthening was analysed and evidenced by interface barrier. The correlation between the strength and the thickness of copper phase (tcu) obeys Hall-Petch relationship and can be described well by geometrical necessary dislocation model and interface as dislocation source model. 展开更多
关键词 形变处理 铜铁复合材料 强度测试 界面加固
下载PDF
Microstructure and properties of deformation-processed Cu-Fe in-situ composites 被引量:1
2
作者 葛继平 赵红 +1 位作者 姚再起 刘书华 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第5期971-977,共7页
The effects of intermediate annealings on the microstructure, the strength and the electrical resistivity of deformation-processed Cu-Fe in-situ composites were studied. The results show that intermediate annealings f... The effects of intermediate annealings on the microstructure, the strength and the electrical resistivity of deformation-processed Cu-Fe in-situ composites were studied. The results show that intermediate annealings favour the formation of uniform tiny fibres from the iron dendrites but they have no obvious effect on the strength of the composite. The bigger the strain is, the higher the strength is. As the strain increases, the resistivity increases due to the increase of interface density. Intermediate annealings result in notable decreasing resistivity due to the precipitation of the iron atoms from the Cu matrix and decrease of solute scattering resistivity. The doping with Zr improves the strength of the composite slightly and the ultimate tensile strength(UTS) increases about 10%. The colligated performances of deformation-processed Cu-11.5%Fe and Cu- 11.5%Fe-Zr composites at strain η= 5.37 are 64.6% IACS/752MPa and 61.4% IACS/824MPa respectively. 展开更多
关键词 铜铁合金 微观结构 复合材料 电阻系数 强度 变形工艺
下载PDF
In Situ Directional Polymerization of Poly(1,3-dioxolane)Solid Electrolyte Induced by Cellulose Paper-Based Composite Separator for Lithium Metal Batteries
3
作者 Jian Ma Yueyue Wu +5 位作者 Hao Jiang Xin Yao Fan Zhang Xianglong Hou Xuyong Feng Hongfa Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期134-143,共10页
In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,whic... In traditional in situ polymerization preparation for solid-state electrolytes,initiators are directly added to the liquid precursor.In this article,a novel cellulose paper-based composite separator is fabricated,which employs alumina as the inorganic reinforcing material and is loaded with polymerization initiator aluminum trifluoromethanesulfonate.Based upon this,a separator-induced in situ directional polymerization technique is demonstrated,and the extra addition of initiators into liquid precursors is no longer required.The polymerization starts from the surface and interior of the separator and extends outward with the gradually dissolving of initiators into the precursor.Compared with its traditional counterpart,the separator-induced poly(1,3-dioxolane)electrolyte shows improved interfacial contact as well as appropriately mitigated polymerization rate,which are conducive to practical applications.Electrochemical measurement results show that the prepared poly(1,3-dioxolane)solid electrolyte possesses an oxidation potential up to 4.4 V and a high Li+transference number of 0.72.After 1000 cycles at 2 C rate(340 mA g^(−1)),the assembled Li||LiFePO_(4)solid battery possesses a 106.8 mAh g^(−1)discharge capacity retention and 83.5%capacity retention ratio,with high average Coulombic efficiency of 99.5%achieved.Our work may provide new ideas for the design and application of in situ polymerization technique for solid electrolytes and solid batteries. 展开更多
关键词 cellulose paper-based composite separator in situ directional polymerization lithium metal battery poly-DOL electrolyte solid-state electrolyte
下载PDF
Higher alcohol synthesis over Cu-Fe composite oxides with high selectivity to C_(2+)OH 被引量:11
4
作者 Zhenghong Bao Kang Xiao +5 位作者 Xingzhen Qi Xinxing Wang Liangshu Zhong Kegong Fang Minggui Lin Yuhan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期107-113,共7页
Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product... Cu-Fe composite oxides were prepared by co-precipitation method and tested for higher alcohol synthesis from syngas. The selectivity to C2+OH and C6+OH in alcohol distribution was very high while the methane product fraction in hydrocarbon distribution was rather low, demonstrating a promising potential in higher alcohols synthesis from syngas. The distribution of alcohols and hydrocarbons approximately obeyed Anderson-Schulz-Flory distribution with similar chain growth probability, indicating alcohols and hydrocarbons derived from the same intermediates. The effects of Cu/Fe molar ratio, reaction temperature and gas hourly space velocity (GHSV) on catalytic performance were studied in detail. The sample with a Cu/Fe molar ratio of 10/1 exhibited the best catalytic performance. Higher reaction temperature accelerated water-gas-shift reaction and led to lower total alcohols selectivity. GHSV showed great effect on catalytic performance and higher GHSV increased the total alcohol selectivity, indicating there existed visible dehydration reaction of alcohol into hydrocarbon. 展开更多
关键词 higher alcohol synthesis SYNGAS cu-fe composite oxides molar ratio GHSV
下载PDF
Microstructure and mechanical properties of Ni-based composite coatings reinforced by in situ synthesized TiB_2 + TiC by laser cladding 被引量:16
5
作者 Jun Li Xuan-jun Zhang +1 位作者 Hui-ping Wang Man-ping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期57-64,共8页
A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observ... A Ni-based composite coating reinforced by in situ synthesized TiB2 and TiC particles was fabricated on Ti6A14V by laser cladding. An attempt was made to correlate the thermodynamic predictions and experimental observation. The micro- structure and the microhardness profile across the coating were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and a hardness tester. It is found that the coating mainly consists of a large number of reinforcements (black blocky TiB2, flower-like or equiaxial TiC, and fine acicular CrB) and the 7 matrix. The hardness of TiB2, TiC, and CrB reinforcements is much higher than that of the 7 matrix. The dispersive distribu- tion of such high hardness reinforcements causes the increase in hardness of the whole coating. The average value of the hard- ness is approximately Hv0.2 700 in the coating. The hardness of the coating is obviously higher than that of the substrate due to the dispersion strengthening of reinforcements. 展开更多
关键词 composite coatings laser cladding in situ processing microstructure mechanical properties
下载PDF
Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding 被引量:16
6
作者 LI Jun YU Zhishui WANG Huiping LI Manping 《Rare Metals》 SCIE EI CAS CSCD 2010年第5期465-472,共8页
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were pre... Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-BnC-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains. 展开更多
关键词 composite coatings laser cladding in situ synthesis microstructure thermodynamic calculation
下载PDF
Mechanical Properties and Microstructure of In Situ TiB_2-7055 Composites 被引量:8
7
作者 CHEN dong LE Yong-kang BAI Liang MA Nai-heng LI Xian-feng WANG Hao-wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期66-70,共5页
In order to fabricate a kind of high strength particulate reinforced aluminum-matrix composites, the high strength aluminum alloy 7055 was selected as a matrix. Composites reinforced with varying amounts of TiB2 parti... In order to fabricate a kind of high strength particulate reinforced aluminum-matrix composites, the high strength aluminum alloy 7055 was selected as a matrix. Composites reinforced with varying amounts of TiB2 particles were synthesized using the in situ method, and their mechanical properties and microstructure were analyzed. It is found that the in situ TiB2 particles sized from 50 to 400 um uniformly disperse in the matrix. With the weight fraction of TiB2 particles increasing, the elastic modulus as well as the yield strength and the ultimate tensile strength increase, while the ductility decrease. The improvement of strength could be attributed to good bonding between TiB2 and the matrix, and also the TiB2 particles act as a barrier to dislocation. 展开更多
关键词 metal matrix composite in situ mechanical properties MICROSTRUCTURE
下载PDF
RECIPROCATING EXTRUSION OF IN SITU Mg_2Si REINFORCED Mg-Al BASED COMPOSITE 被引量:8
8
作者 Z.M. Zhang C.J. Xu X.F. Guo S.Z. Jia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期169-177,共9页
M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat t... M92Si reinforced Mg-Al based composite with high amount o/silicon was prepared by permanent mould casting, and then extruded by reciprocating extrusion (RE) after the composite was processed by homogenization heat treatment. The effect of RE processing on the morphology and size of M92Si and the mechanical properties of the com- posite were investigated, to develop new ways to refine the M928i phase and improve its shape. The result showed that RE was very useful in refining the M92Si phase. The more the RE processing passes, the better the refining effect would be. Moreover, the uniform distribution of M928i phases would be more in the composite. After the composite was processed by RE for 12 passes, most M92Si phases were equiaxed, with granular diameter below 20 μm, and distributed uniformly in the matrix of the composite. The mechanical properties of the composite could be increased prominently by RE processing, and were much higher than that in the as-cast state. As the temperature rises, the tensile strength is reduced. For the composite RE processed for 12 passes, the tensile strength, yield strength, and elongation are 325.9 MPa, 211.4 MPa, and 3.3% at room temperature, whereas, 288.2 MPa, ,207.7 MPa, and 7.8%, respectively, at 150℃. In comparison with the properties at room temperature, the tensile strength and yield strength are high and only decrease by 11.6% and 1.8% at 150℃. The M928i reinforced Mg-Al based composite possesses good heat resistance at 150℃. The excellent resistance to effect of heat is attributed to the high melting tempera- ture and good thermal stability of fine Mg2Si phases, which are distributed uniformly in the composite, and effectively hinder the grain boundary gliding and dislocation movement. 展开更多
关键词 Reciprocating extrusion Magnesium alloy In situ composite Elevated temperature property
下载PDF
In situ strengths of matrix in a composite 被引量:5
9
作者 Zheng-Ming Huang Li-Min Xin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第1期120-131,共12页
A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths... A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths of the pure matrix, on the basis of which the predicted transverse strengths of a unidirectional (UD) composite are far from reality. It is impossible to reliably measure matrix in situ strengths. This paper focuses on the correlation between in situ and original strengths. Stress concentrations in a matrix owing to the introduction of fibers are attributed to the strength variation. Once stress concentration factors (SCFs) are obtained, the matrix in situ strengths are assigned as the original counterparts divided by them. Such an SCF cannot be defined following a classical approach. All of the relevant issues associated with determining it are systematically addressed in this paper. Analytical expressions for SCFs under transverse tension, transverse compression, and transverse shear are derived. Closed-form and compact formulas for all of the uniaxial strengths of a UD composite are first presented in this paper. Their application to strength predictions of a number of typical UD composites demonstrates the correctness of these formulas. 展开更多
关键词 compositeS Strength formulas MICROMECHANICS Stress concentration factor Matrix in situ strength
下载PDF
IN SITU PROCESSING OF Al_(2)O_(3) WHISKERS REINFORCED Ti-Al INTERMETALLIC COMPOSITES 被引量:6
10
作者 F.Wang Z.K.Fan J.F.Zhu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第6期432-440,共9页
In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and micro... In situ Al2O3 whiskers reinforced Ti-Al intermetallic composites were fabricated at ~1200℃ by reaction sintering of cold-consolidated fillets consisting mainly of Ti, Al, and different additives. The phases and microstructures of the sintered composites were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The process of synthesis was investigated using differential thermal analysis (DTA). The effects of processing parameters and additives on the microstructures of the composites and the development of whisker were examined. It is found that the morphology of the whisker is strongly influenced by the additives, the exothermal reaction process, and the processing parameters. 展开更多
关键词 in situ Al2O3 whisker Ti-Al intermetallic composite ADDITIVE reaction process
下载PDF
Analysis of in situ Reaction and Pressureless Infiltration Process in Fabricating TiC/Mg Composites 被引量:5
11
作者 Qun DONG, Liqing CHEN, Mingjiu ZHAO and Jing BIInstitute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期3-7,共5页
An innovative processing route, in situ reaction combined with pressureless infiltration, was adopted to fabricate magnesium matrix composites, where the reinforcement TiC formed in situ from elemental Ti and C powder... An innovative processing route, in situ reaction combined with pressureless infiltration, was adopted to fabricate magnesium matrix composites, where the reinforcement TiC formed in situ from elemental Ti and C powders and molten Mg spontaneously infiltrated the preform of Ti and C. The influences of primarily elemental particle sizes, synthesizing temperature, holding time etc on in situ reactive infiltration for Mg-Ti-C system were systematically investigated in order to explore the mechanism of this process. In fabricating TiC/Mg composites, Mg can not only spontaneously infiltrate the preform of reinforcement and thus densify the as fabricated composites as matrix metal, but also it can accelerate the in situ reaction process and lower the synthesizing temperature of Ti and C as well. In situ reaction of Ti and C and Mg infiltration processes are essentially overlapping and interacting during fabrication of TiC/Mg composites. The mechanism proposed in this paper can be used to explain the formation and morphologies of the reinforcement phase TiC. 展开更多
关键词 Magnesium matrix composite In situ reactive infiltration Titanium carbide MECHANISM
下载PDF
Microstructure of in situ Al_3Ti/6351Al composites fabricated with electromagnetic stirring and fluxes 被引量:5
12
作者 李桂荣 王宏明 +3 位作者 赵玉涛 陈登斌 陈刚 程晓农 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期577-583,共7页
The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagne... The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagnetic stirring(EMS).CaF2 and LiCl acted as fluxes to lower the reaction temperature of the system.It is shown that the electromagnetic stirring and fluxes accelerate the emulsion process of K2TiF6.Optical microscopy,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrum were utilized to analyze the microstructure and components of composites.Compared to composites fabricated without EMS and fluxes,the sizes of endogenetic Al3Ti are refined from 10-15μm to 2-4μm,which are often accompanied with silicon element.The morphology of Al3Ti or Al3TiSi0.22 exhibits triangle,quadrilateral and other clumpy patterns. Because of the Ca elements from CaF2,the sizes of Mg2Si decrease from 8-10μm to 1-2μm due to the formation of Ca2Si. 展开更多
关键词 6351 Al alloy MICROSTRUCTURE in situ particle reinforced aluminum composites electromagnetic stirring FLUXES
下载PDF
Microstructure and Mechanical Behavior of in Situ Primary Si/Mg_2Si Locally Reinforced Aluminum Matrix Composites Piston by Centrifugal Casting 被引量:3
13
作者 HAO Xuhong LIU Changming PAN Dengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期656-660,共5页
Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, ... Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products. 展开更多
关键词 PISTON centrifugal casting in situ composite primary Si MG2SI
下载PDF
Microstructure and properties of in situ synthesized TiB_2+WC reinforced composite coatings 被引量:3
14
作者 LI Jun ZHANG Huiying LI Wenge ZHANG Guangjun 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期451-456,共6页
Nickel-based composite coatings reinforced by in situ synthesized TiB2 and WC particles were deposited on stainless steel by laser cladding, and their microstmcture and mechanical properties were investigated. The res... Nickel-based composite coatings reinforced by in situ synthesized TiB2 and WC particles were deposited on stainless steel by laser cladding, and their microstmcture and mechanical properties were investigated. The results show that the coatings are mainly composed of 7-Ni cellular dendrites and dispersed spherical/strip/network shaped TiB2 and equiaxial WC particles. The initial WC particles are dissolved to become fine and mostly dispersed within Y-Ni cellular dendrites. The coating prepared at a special laser energy of 0.225 kJ@mm^-2 is uniform, continuous, and free of pores and cracks. With the decrease in special energy density, TiB2 phase changes from fine spherical particles which cluster together to strip shape with different morphologies and further crystallizes to form network structure, and the dispersion zone also gradually changes from intragranular to intergranular phase. The coating possesses a higher microhardness compared with the substrate, and it has a good metallurgical bond with the substrate and excellent cracking resistance. 展开更多
关键词 laser cladding in situ synthesis composite coating microstructure
下载PDF
AN IN SITU SURFACE COMPOSITE AND GRADIENT MATERIAL OF Al-Si ALLOY PRODUCED BY ELECTROMAGNETIC FORCE 被引量:3
15
作者 Z.M. Xu, T.X. Li, Z.L. Zhu and Y.H. Zhou School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第5期335-340,共6页
Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force ap... Because of the different conductivities between the primary phase (low electric conduc tivity) and the metal melt, electromagnetic force scarcely acts on the primary phase. Thus, an electromagnetic repulsive force applied by the metal melt exerts on the pri mary phase when the movement of the melt in the direction of electromagnetic force is limited. As a result, the repulsive force exerts on the primary phase to push them to move in the direction opposite to that of the electromagnetic force when the metal melt with primary phase solidifies under an electromagnetic force field. Based on this, a new method for production of in situ surface composite and gradient material by electromagnetic force is proposed. An in situ primary Si reinforced surface composite of Al-15wt%Si alloy and gradient material of Al-l9wt%Si alloy were produced by this method. The microhardness of the primary Si is HV1320. The reinforced phase size is in the range from 40μm to 100μm. The wear resistance of Al-Si alloy gradient material can be more greatly increased than that of their matrix material. 展开更多
关键词 Al-Si alloy electromagnetic force in situ surface composite gradient material
下载PDF
A STEEL MATRIX WEAR RESISTANT COMPOSITE REINFORCED BY IN-SITU GRANULAR EUTECTICS 被引量:3
16
作者 Z.M. Xu, T.X. Li and J.G. Li (School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第2期79-84,共6页
A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is... A new steel matrix wear resistant composite reinforced by in situ granular eutectics can be obtained by modifying with a Si-Ce-Ti compound in the steel melt. The result indicates that the in situ granular eutectic is a pseudo-eutectic of austenite and (Fe,Mn)3C, which is formed between austenite dendrites during solidification due to the segregation of C and Mn impelled by modifying elements. The quantity of in situ granular eutectic reaches up to 8%-12% and its grain size is in the range from 10um to 20um. The austenite steel matrix wear resistant composite reinforced by in situ granular eutectic (abbreviated AGE composite) and austenite-bainite steel mains wear resistant composite reinforced by in situ granular eutectic (abbreviated ABGE composite) are obtained in the as-cast state and by air hardening, respectively. The wear resistance of the AGE and ABGE composites can be more greatly increased than that of their matrix steels under low and medium impact working condition. 展开更多
关键词 steel matrix composite Si-Ce-Ti compound in situ granular eutectic mechanical property
下载PDF
Erosive Wear and Wear Mechanism of in situ TiC_P/Fe Composites 被引量:3
17
作者 Zhaojing LIU, Zhiliang NING , Fengzhen LI, Xiurong YAO and Shanzhi RENSchool of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期719-723,共5页
The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resi... The base structure of in situ TiCp/Fe composites fabricated under industrial condition was changed by different heat treatments. Erosive wear tests were carried out and the results were compared with that of wear-resistant white cast iron. The results suggest that the wear resistance of the in situ TiCp/Fe composite is higher than that of wear-resistant white cast iron under the sand erosive wear condition. The wear mechanism of the wear-resistant white cast iron was a cycle process that base surface was worn and carbides were exposed, then carbides was broken and wear pits appeared. While the wear mechanism of in situ TiCp/Fe composite was a cycle process that base surface was worn and TiC grains were exposed and dropped. The wear resistance of in situ TiCp/Fe composite was lower than that of wear-resistant white cast iron under the slurry erosive wear condition. Under such circumstance, the material was not only undergone erosive wear but also electrochemistry erosion due to the contact with water in the medium. The wear behaviours can be a combination of two kinds of wear and the sand erosive wear is worse than slurry erosive wear. 展开更多
关键词 In situ TiCp/Fe composite Erosive wear Wear mechanism
下载PDF
Biomimetic Preparation of Magnetite/Chitosan Nanocomposite via In Situ Composite Method ——Potential Use in Magnetic Tissue Repair Domain 被引量:2
18
作者 HU Qiao-ling WU Jia CHEN Fu-ping SHEN Jia-cong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第6期792-796,共5页
This study focused on the preparation of magnetic chitusan nanocompesite that has a potential application to bone repair and regeneration using an in situ composite method where chitosan membrane was used as the templ... This study focused on the preparation of magnetic chitusan nanocompesite that has a potential application to bone repair and regeneration using an in situ composite method where chitosan membrane was used as the template and NaOH was used as the precipitant. X-ray diffraction analysis results show the formation of magnetite in the chitosan matrix. From the magnetic measurement, it could be concluded that the magnetic chitosan rods were superparamagnetic,and that this is the unique property of nanomagnetite. Macroscopical layer structure of the magnetic chitosan rods was observed from the photographs after mechanical test, and the microlayer structure of the rods was observed from the images of scanning electron microscopy. The mechanism for preparing the rods was discussed in detail. Transmission electron microscope was used to investigate the magnetite particles in the chitosan matrix and from the images it was concluded that the magnetite particles dispersed well in chitosan matrix with particle size of about 10 nm. The mechanical properties of the magnetic chitosan rods were measured and the blending strength was found to be 98. 8 MPa. The mechanical properties did not decline when compared with those of the pure chitosan materials. 展开更多
关键词 CHITOSAN MAGNETITE In situ compositing Red
下载PDF
Research on development of in situ titanium matrix composites and in situ reaction thermodynamics of the reaction systems 被引量:3
19
作者 Lifang Cai Yongzhong Zhang Likai Shi Haoqiang Yang Mingzhe Xi 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期551-557,共7页
The in situ synthesis method for titanium matrix composites (TMCs) has obvious technical and economical advantages over other traditional methods. Ultrafine reinforcement particles were formed in situ by chemical re... The in situ synthesis method for titanium matrix composites (TMCs) has obvious technical and economical advantages over other traditional methods. Ultrafine reinforcement particles were formed in situ by chemical reaction between elements or between elements and compounds. Using the approach, contamination at the composite matrix/reinforcement particle interface did not occur, interface bonding was good, and the reinforcement particle was thermodynamically stable. The stage of development of the preparation process for in situ TMCs as well as the thermodynamic analysis of the possible in situ reaction systems was described. 展开更多
关键词 in situ titanium matrix composites reaction synthesis reaction system thermodynamic analysis
下载PDF
Reaction procedure of a graphite fiber reinforced Ti-Al composite produced by squeeze casting-in situ reaction 被引量:2
20
作者 WU Gaohui LIU Yanmei +2 位作者 XIU Ziyang JIANG Longtao YANG Wenshu 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期98-101,共4页
The in situ reaction procedure and microstructure evolution of a graphite fiber reinforced Ti-Al composite (Grf/Ti-Al) was investigated, and the stability of TiAl3 at high temperature was discussed. As-cast material... The in situ reaction procedure and microstructure evolution of a graphite fiber reinforced Ti-Al composite (Grf/Ti-Al) was investigated, and the stability of TiAl3 at high temperature was discussed. As-cast material was prepared by pressing molten pure aluminum into a preform, which was composed of titanium particles and graphite fibers. The in situ reaction procedure of the as-cast material was investigated by differential scanning calorimetry (DSC), and phases in the products were detected by X-ray diffraction (XRD). Experimental results showed that TiAl3 was formed first. With an increase in temperature, TiC and Al4C3 were observed, but TiAl3 decreased. In the final product, Al2O3 and TiO2 were observed. It was considered that the previous forming TiAl3 decomposed, then TiC precipitated, and subsequently, oxidation resulted in the formation of Al2O3 and TiO2. 展开更多
关键词 INTERMETALLICS titanium aluminide composites microstmcture squeeze casting in situ reaction
下载PDF
上一页 1 2 133 下一页 到第
使用帮助 返回顶部