With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commerc...With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability.展开更多
Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of ...Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.展开更多
Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),K...Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.展开更多
The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for...The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for p-xylene from o-xylene molecules. Pure IMF-phase high-silica IM-5 zeolite seeds with uniform and fine crystal size were fabricated by a new sonication-assisted aging process. The seeds were coated on the support by dipcoating and induced the formation of continuous membrane. Separation performance in p-/o-xylene mixture was investigated at various temperature and pressure. The typical IM-5zeolite membrane had p-/o-xylene separation factor of 3.7. Our results suggest that IM-5 zeolite is a potentially good membrane material for the separation of xylene mixtures.展开更多
Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial abilit...Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.展开更多
Pervaporation(including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the sepa...Pervaporation(including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the separation and purification of organic solvents. Dehydration is an important step in the production and recovery of organic solvents. Zeolite membranes have attracted wide attention for pervaporation dehydration due to their high separation performance and good thermal/chemical stability. So far, zeolite membranes have been preliminarily industrialized for dehydration of organic solvents. This paper reviews the recent development of zeolite membranes for pervaporation dehydration, including mass transfer models, preparation and applications of zeolite membranes. The review also discusses the current industrial applications of zeolite membranes and their future development in pervaporation.展开更多
In this study, the effect of zeolite powder addition on submerged membrane bioreactor (SMBR) on membrane permeability, and the removals for COD, NH3-N, TN were investigated. Through the parallel operation of control...In this study, the effect of zeolite powder addition on submerged membrane bioreactor (SMBR) on membrane permeability, and the removals for COD, NH3-N, TN were investigated. Through the parallel operation of control and test systems, it was found that the zeolite powder addition could alleviate the ultra-filtration membrane fouling and enhance the membrane permeability. On the basis of experimental investigations, a concept of "protection coating layer" was proposed to illustrate the phenomenon of UF membrane fouling. In addition, the removal for COD in test system was more stable, a little higher compared to the control system. Due to the combination of nitrification and ion exchange, a more excellent removal for NH3-N in test system was obtained regardless of influent NH3-N loading rate. It was also found that a mean 25% higher TN removal took place in the test system, and ion exchange and simultaneous nitrification and de-nitrification were analyzed to be main factors. During the stable operation period, the SOURs of test zeolite powder added sludge and control activated sludge were measured to be 75 mgO2/(gMLVSS, h) and 24 mgO2/(gMLVSS, h) respectively, it meant that the zeolite powder addition could enhance the microorganism activity significantly.展开更多
Zeolite membranes offer outstanding potentials in separation of many molecular mixtures due to their molecular sieving selectivity and the high thermal and mechanical stability that allow them to operate at harsh cond...Zeolite membranes offer outstanding potentials in separation of many molecular mixtures due to their molecular sieving selectivity and the high thermal and mechanical stability that allow them to operate at harsh conditions.Development of durable and high separation performance membranes with lower fabrication and operation cost are highly demanded for industrial applications. Zeolite T membrane possesses good acid-resistance with excellent hydrophilic properties as compared to NaA zeolite membrane and can be extended to industrial organic dehydrations under an acidic environment. In the present review the research advances in development of zeolite T membranes for the dehydration of organic mixtures in acidic conditions are summarized. Especially the low temperature synthesis, and epitaxial growth of the zeolite membrane with high performance are well addressed, besides emphasis is particularly placed on ensemble synthesis of hollow fiber zeolite T membrane module and its future prospects for industrial separations.展开更多
NaA zeolite membranes with 80 cm in length and 12.8 mm in outer diameter were prepared by our research group cooperating with Nanjing Jiusi Hi-Tech Co., China. The influence of dissolved inorganic salts and pH value i...NaA zeolite membranes with 80 cm in length and 12.8 mm in outer diameter were prepared by our research group cooperating with Nanjing Jiusi Hi-Tech Co., China. The influence of dissolved inorganic salts and pH value in the feed of isopropanol (IPA) solution on NaA zeolite membranes was investigated. It was found that both factors exhibited strong influence on the stability of NaA zeolite membranes. A set of pretreatment steps such as pH adjustment and distillation of the IPA solution were proposed to improve stability for pervaporation dehydration. An industrial-scale pervaporation facility with 52 m2 membrane area was built to dehydrate IPA solution from industrial cephalosporin production. The facility was continuously operated at 368-378 K to dehydrate IPA solution from water mass content of 15%-20% to less than 2% with a feed flow rate of 400-500 L·h^-1 and an average water flux of 1-1.5 kg·m^-2·h-1. The successful application of this facility suggested a promising application of NaA zeolite mem-brane for IPA recovery from pharmaceutical production.展开更多
A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow ...A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not he neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of d1/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.展开更多
Template-free nanosized ZSM-5 seeds with an average size of 15 nm were prepared from a synthesis solution with the composition 12Na2O∶100SiO2∶2Al2O3∶2500H2O. By the use of these seeds, thin ZSM-5 zeolite membranes ...Template-free nanosized ZSM-5 seeds with an average size of 15 nm were prepared from a synthesis solution with the composition 12Na2O∶100SiO2∶2Al2O3∶2500H2O. By the use of these seeds, thin ZSM-5 zeolite membranes were prepared on the outer surface of a porous α-alumina tube with a pore size of 2 μm in a gel system by varying-concentration synthesis with organic-free template. The first composition synthesis sol-gel was the same as seeds of molar composition and the second one was 12Na2O∶100SiO2∶2Al2O3∶5000H2O at 180 ℃ for 10 h, respectively. XRD shows that the film consists of well-crystallized ZSM-5 zeolite. SEM investigation indicats that the zeolite films on the supports are defect free and the film thickness is approximately 8 μm. The permeances for H2, N2, CH4 and CO2 are 8.94×10-7, 3.27×10-7, 3.9×10-7, 3.14×10-7 and 0.874×10-7 mol·m2·s-1·Pa-1, respectively. The ideal selectivity of membrane at room temperature for H2/CO2, H2/N2, H2/CH4 are 2.84, 2.73 and 2.29, respectively.展开更多
This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Str...This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concentration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle.Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration.展开更多
A continuous and dense NaA zeolite membrane was synthesized by microwave heating method while employing a multi-step seeding LTA zeolite with the average size of 120 nm. The gas H2/N2 mixture separating results indic...A continuous and dense NaA zeolite membrane was synthesized by microwave heating method while employing a multi-step seeding LTA zeolite with the average size of 120 nm. The gas H2/N2 mixture separating results indicated that the mixture selectivity increased with increasing of synthesis times. In addition, selectivity of the three-step synthesis was higher than the value(3.74) expected from Kundsen diffusion.展开更多
Helium(He)is commercially produced from natural gas by low-temperature condensation.The process is energy extensive because of the extremely low He concentration(<0.3%)and the operation at cryogenic temperature.Her...Helium(He)is commercially produced from natural gas by low-temperature condensation.The process is energy extensive because of the extremely low He concentration(<0.3%)and the operation at cryogenic temperature.Herein we demonstrated DD3R zeolite membrane was efficient to extract He from natural gas at atmosphere temperature.The membrane performance was evaluated in terms of temperature,pressure and molar fractions.The overall membrane performance was dominated by the diffusivity selectivity.The single He permeance and ideal He/CH_(4) selectivity were 5.8×10^(-9)mol·m^(-2)·s^(-1)·Pa^(-1)and 79 under a feed pressure of 1.3 MPa.Even though He concentration was as low as 0.22%,the He permeance and He/CH_(4) mixture selectivity were 3.0×10^(-9)mol·m^(-2)·s^(-1)·Pa^(-1)and 44 at 0.7 MPa.During the longterm operation(~130 h)the membrane performance was stable even the feed mixture containing3.6%ethane as contaminations.The results approved the feasibility of DD3R zeolite membranes for He extraction from natural gas.展开更多
Growth process of the NaY zeolite membranes was investigated by fluoride-containing precursor synthesis gel.Compared with the fluoride-free precursor synthesis gel,the irregular NaY zeolite crystals were dissolved int...Growth process of the NaY zeolite membranes was investigated by fluoride-containing precursor synthesis gel.Compared with the fluoride-free precursor synthesis gel,the irregular NaY zeolite crystals were dissolved into amorphous by the fluoride-containing precursor synthesis gel initially,the amorphous contained the Y-type zeolite characteristic bands by the IR characterization.The fine square NaY zeolite crystals arose from the amorphous,which were accumulated and gradually grew into a dense NaY zeolite layer on the support surface after 6.5 h.Because the excessive NaY zeolites were dissolved by the strong alkaline and fluoride-containing precursor synthesis gel,there was plenty of amorphous on NaY zeolites layer for prolonging the crystallization time.The assynthesized NaY zeolite membranes had a good separation performance and repeatability for separation of 10 wt%methanol(MeOH)/methyl methacrylate(MMA) mixture by pervaporation,the flux and separation factor were(1.27 ± 0.07) kg·M^(-2)·h^(-1) and(4900 ± 1500) at 323 K,respectively.Besides,the NaY zeolite membranes were applied to separate the other short chain alcohol from the various alcohol/organic ester and alcohol/organic ether mixtures,the NaY zeolite membranes showed high short chain alcohol perm-selectivity.展开更多
Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-see...Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-seeding adopted the directing agent for Y-type zeolite synthesis serving as seeds. The effects of aging time of the directing agent, electrophoresis voltage and electrophoresis deposition time on seed layers quality as well as the quality of zeolite membranes were investigated. The results indicated that the zeolite seeds derived from the directing agent could be evenly deposited on substrate under certain EPD conditions. The XRD patterns of the seeded substrates after the secondary growth showed that the pure as-synthesized Y-type zeolite membranes had successfully grown on the substrates. The SEM images indicated that the substrate was covered by the highly intergrown zeolite crystals when the seeding solution employed the directing agent with an aging time of 2 days. The separation performance of zeolite membrane was evaluated using a CO_2/N2 mixture(with a mole ratio of 1:1) at different temperatures. Furthermore, the pervaporation measurements were carried out for the dehydration of isopropanol aqueous solutions with different mass fractions. The as-synthesized Y-type zeolite membranes exhibited a relatively high selectivity of water from isopropanol and sustainable permeation flux.展开更多
Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X...Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.展开更多
A NaA zeolite membrane was synthesized on the surface of the stainless steel slab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals ...A NaA zeolite membrane was synthesized on the surface of the stainless steel slab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 ~ 6 mm.展开更多
A defect-free SAPO-44 zeolite membrane firmly anchored the porous α-Al2O3 plate substrate was successfully synthesized. The separating results showed that the H2/N2 and H2/CO permselectivities were higher than those ...A defect-free SAPO-44 zeolite membrane firmly anchored the porous α-Al2O3 plate substrate was successfully synthesized. The separating results showed that the H2/N2 and H2/CO permselectivities were higher than those of the corresponding Knudsen diffusion and the substrate, attaining 5.78 and 7.15 respectively.展开更多
High quality A-type zeolite membranes, with enlarged area over 70 cm2, were successfully synthesized on a tubular a-Al2O3 support by applying the vacuum seeding method.
基金financial support provided by Liaoning Revitalization Talents Program(XLYC2007171)the Natural Science Foundation of Liaoning Province(2021-MS-321)Research funding project of Liaoning Provincial Education Department(LJKZZ20220086)。
文摘With the development of hydrogen energy,palladium-based membranes have been widely used in hydrogen separation and purification.However,the poor chemical stability of palladium composite membranes limits their commercial applications.In this study,a zeolite-palladium composite membrane with a sandwich-like structure was obtained by using a TS-1 zeolite film grown on the surface of palladium membrane.The membrane microstructure was characterized by SEM and EDX.The effects of the TS-1 film on the hydrogen permeability and stability of palladium composite membrane were investigated in details.Benefited from the protection of the TS-1 zeolite film,the stability of palladium composite membrane was enhanced.The results indicate that the TS-1-Pd composite membrane was stable after eight cycles of the temperature exchange cycles between 773 K and 623 K.Especially,the loss of hydrogen permeance for TS-1-Pd composite membrane was much smaller than that of the pure palladium membrane when the membrane was tested in the presence of C3H6atmosphere.It indicated that the TS-1-Pd composite membrane had better chemical stability in comparison with pure palladium membrane,owing to its sandwich-like structure.This work provides an efficient way for the deposition of zeolite film on palladium membrane to enhance the membrane stability.
基金Financial support from the Science Fund for Creative Research Groups of the National Science Foundation of China (22021005)the National Natural Science Foundation of China (21776032)the Innovation Team of Dalian University of Technology (DUT2017TB01)。
文摘Tungsten (W) incorporated mobil-type eleven (MEL) zeolite membrane (referred to as W-MEL membrane) with high separation performance was firstly explored for the separation of oil/water mixtures under the influence of gravity.W-MEL membranes were grown on stainless steel (SS) meshes through in-situ hydrothermal growth method facilitated with (3-aminopropyl)triethoxysilane (APTES) modification of stainless steel meshes,which promote the heterogeneous nucleation and crystal growth of W-MEL zeolites onto the mesh surface.W-MEL membranes were grown on different mesh size supports to investigate the effect of mesh size on the separation performance of the membrane.The assynthesized W-MEL membrane supported on 500 mesh (25μm)(W-MEL-500) exhibit the hydrophilic nature with a water contact angle of 11.8°and delivers the best hexane/water mixture separation with a water flux and separation efficiency of 46247 L·m^(-2)·h^(-1)and 99.5%,respectively.The wettability of W-MEL membranes was manipulated from hydrophilic to hydrophobic nature by chemically modifying with the fluorine-free compounds (hexadecyltrimethoxysilane (HDTMS) and dodecyltrimethoxysilane(DDTMS)) to achieve efficient oil-permselective separation of heavy oils from water.Among the hydrophobically modified W-MEL membranes,W-MEL-500-HDTMS having a water contact angle of146.4°delivers the best separation performance for dichloromethane/water mixtures with a constant oil flux and separation efficiency of 61490 L·m^(-2)·h^(-1)and 99.2%,respectively along with the stability tested up to 20 cycles.Both W-MEL-500-HDTMS and W-MEL-500-DDTMS membranes also exhibit similar separation performances for the separation of heavy oil from sea water along with a 20-fold lower corrosion rate in comparison with the bare stainless-steel mesh,indicating their excellent stability in seawater.Compared to the reported zeolite membranes for oil/water separation,the as-synthesized and hydrophobically modified W-MEL membranes shows competitive separation performances in terms of flux and separation efficiency,demonstrating the good potentiality for oil/water separation.
基金supported by the National Natural Science Foundation of China(21868012 and 21868013)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20181ACH80003)。
文摘Pervaporation performance of NaY zeolite membranes is improved by ion-exchange with di-valent nitrate salt.Different nitrate salts,including Co(NO_(3))_(2),Mg(NO_(3))_(2),Zn(NO_(3))_(2),Ca(NO_(3))_(2),Cu(NO_(3))_(2),KNO_(3),and AgNO_(3),have great effects on the channel structure and water affinity of the NaY zeolite membrane.When the concentration of nitrate salt,ion-exchange temperature and time are 0.1 mol·L^(-1),50℃and 2 h,the ion-exchange degree order of NaY zeolites is Ag^(+)>K^(+)>Ca^(2+)>Zn^(2+)>>Co^(2+)>Mg^(2+).Especially,Ag^(+)and K^(+)cation exchange degree of NaY zeolites are achieved to 96.54% and 82.77% in this work.BET surface,total pore capacity,pore size distribution and water contact angle of the ion-exchanged NaY zeolites are all disordered by mono-and di-valent cations.Di-valent nitrate salt is favor for increasing the dehydration performance of NaY zeolite membranes by ion-exchange.When the ion-exchange solution is Zn(NO_(3))_(2),the total flux variation and separation factor variation of the NaY membrane(M-5)are -45% and 230% for separation of 10%(mass)H_(2)O/EtOH mixture by pervaporation,and the ion-exchanged membranes showed good reproducibility.
基金the financial supports that are from the National Natural Science Foundation of China (21921006, U22A20414 and 21938007)the Natural Science Foundation of Jiangsu Province (BK20220002)the open project of the State Key Laboratory of China (KL21-04 and D2021FK055)。
文摘The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for p-xylene from o-xylene molecules. Pure IMF-phase high-silica IM-5 zeolite seeds with uniform and fine crystal size were fabricated by a new sonication-assisted aging process. The seeds were coated on the support by dipcoating and induced the formation of continuous membrane. Separation performance in p-/o-xylene mixture was investigated at various temperature and pressure. The typical IM-5zeolite membrane had p-/o-xylene separation factor of 3.7. Our results suggest that IM-5 zeolite is a potentially good membrane material for the separation of xylene mixtures.
基金supported by the Excellent Youth Foundation of Henan Scientific Committee,China(222300420018)Key Scientific Research Projects in Universities of Henan Province,China(21zx006)。
文摘Layered assembled membranes of 2D leaf-like zeolitic imidazolate frameworks(ZIF-L)nanosheets have received great attention in the field of water treatment due to the porous structure and excellent antibacterial ability,but the dense accumulation on the membrane surface and the low permeate flux greatly hinder their application.Herein,we synthesized m HNTs(modified halloysite nanotubes)/ZIF-L nanocomposites on modified m HNTs by in situ growth method.Interestingly,due to the different size of m HNTs and ZIF-L,m HNTs were packed in ZIF-L nanosheets.The hollow m HNTs provided additional transport channels for water molecules,and the accumulation of the ZIF-L nanosheets was decreased after assembling m HNTs/ZIF-L nanocomposites into membrane by filtration.The prepared m HNTs/ZIF-L membrane presented high permeate flux(59.6 L·m^(-2)·h^(-1)),which is 2-4 times of the ZIF-L membranes(14.8 L·m^(-2)·h^(-1)).Moreover,m HNTs/ZIF-L membranes are intrinsically antimicrobial,which exhibit extremely high bacterial resistance.We provide a controllable strategy to improve 2D ZIF-L assembles,and develops novel membranes using 2D package structure as building units.
基金Supported by the National Natural Science Foundation of China(21490585,21606126)National High-tech R&D Program of China(2015AA03A602)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Pervaporation(including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the separation and purification of organic solvents. Dehydration is an important step in the production and recovery of organic solvents. Zeolite membranes have attracted wide attention for pervaporation dehydration due to their high separation performance and good thermal/chemical stability. So far, zeolite membranes have been preliminarily industrialized for dehydration of organic solvents. This paper reviews the recent development of zeolite membranes for pervaporation dehydration, including mass transfer models, preparation and applications of zeolite membranes. The review also discusses the current industrial applications of zeolite membranes and their future development in pervaporation.
文摘In this study, the effect of zeolite powder addition on submerged membrane bioreactor (SMBR) on membrane permeability, and the removals for COD, NH3-N, TN were investigated. Through the parallel operation of control and test systems, it was found that the zeolite powder addition could alleviate the ultra-filtration membrane fouling and enhance the membrane permeability. On the basis of experimental investigations, a concept of "protection coating layer" was proposed to illustrate the phenomenon of UF membrane fouling. In addition, the removal for COD in test system was more stable, a little higher compared to the control system. Due to the combination of nitrification and ion exchange, a more excellent removal for NH3-N in test system was obtained regardless of influent NH3-N loading rate. It was also found that a mean 25% higher TN removal took place in the test system, and ion exchange and simultaneous nitrification and de-nitrification were analyzed to be main factors. During the stable operation period, the SOURs of test zeolite powder added sludge and control activated sludge were measured to be 75 mgO2/(gMLVSS, h) and 24 mgO2/(gMLVSS, h) respectively, it meant that the zeolite powder addition could enhance the microorganism activity significantly.
基金Supported by the Fundamental Research Funds of Panjin Industrial Technology Institute(PJYJY2016A004)the National Natural Science Foundation of China(No.21776032)+2 种基金Natural Science Foundation of Anhui Province(1808085QB51)the Key Research and Development Plan of Anhui Province(1804a09020072)the Natural Science Research Project of Anhui Colleges and Universities(KJ2017A397)
文摘Zeolite membranes offer outstanding potentials in separation of many molecular mixtures due to their molecular sieving selectivity and the high thermal and mechanical stability that allow them to operate at harsh conditions.Development of durable and high separation performance membranes with lower fabrication and operation cost are highly demanded for industrial applications. Zeolite T membrane possesses good acid-resistance with excellent hydrophilic properties as compared to NaA zeolite membrane and can be extended to industrial organic dehydrations under an acidic environment. In the present review the research advances in development of zeolite T membranes for the dehydration of organic mixtures in acidic conditions are summarized. Especially the low temperature synthesis, and epitaxial growth of the zeolite membrane with high performance are well addressed, besides emphasis is particularly placed on ensemble synthesis of hollow fiber zeolite T membrane module and its future prospects for industrial separations.
基金Supported by the National t)asic Research Program of China (2009CB623403), the National High Technology Research and De velopment Program of China (2009AA034802), the National Natural Science Foundation of China (20706030, U0834004), the Science & Technology Support Program (Industry) of Jiangsu Province of China (BE2008141), the Natural Science Foundation of the Jiangsu Higher Education Institutions (09KJA530002) and 333 High-Level Personnel Training Project in Jiangsu Province. ** To whom correspondence should be addressed. E-mail: Xuehonggu@yahoo.com
文摘NaA zeolite membranes with 80 cm in length and 12.8 mm in outer diameter were prepared by our research group cooperating with Nanjing Jiusi Hi-Tech Co., China. The influence of dissolved inorganic salts and pH value in the feed of isopropanol (IPA) solution on NaA zeolite membranes was investigated. It was found that both factors exhibited strong influence on the stability of NaA zeolite membranes. A set of pretreatment steps such as pH adjustment and distillation of the IPA solution were proposed to improve stability for pervaporation dehydration. An industrial-scale pervaporation facility with 52 m2 membrane area was built to dehydrate IPA solution from industrial cephalosporin production. The facility was continuously operated at 368-378 K to dehydrate IPA solution from water mass content of 15%-20% to less than 2% with a feed flow rate of 400-500 L·h^-1 and an average water flux of 1-1.5 kg·m^-2·h-1. The successful application of this facility suggested a promising application of NaA zeolite mem-brane for IPA recovery from pharmaceutical production.
基金Supported by the National Natural Science Foundation of China(21490585 and21776128)the National High-tech R&D Program of China(2015AA03A602)+1 种基金the"Six Top Talents"and"333 Talent Project"of Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not he neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of d1/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.
基金This work was financially supported by the Specialized Research Fund for the Doctoral Program of High Education (SRFDP)(No.B20020288015).
文摘Template-free nanosized ZSM-5 seeds with an average size of 15 nm were prepared from a synthesis solution with the composition 12Na2O∶100SiO2∶2Al2O3∶2500H2O. By the use of these seeds, thin ZSM-5 zeolite membranes were prepared on the outer surface of a porous α-alumina tube with a pore size of 2 μm in a gel system by varying-concentration synthesis with organic-free template. The first composition synthesis sol-gel was the same as seeds of molar composition and the second one was 12Na2O∶100SiO2∶2Al2O3∶5000H2O at 180 ℃ for 10 h, respectively. XRD shows that the film consists of well-crystallized ZSM-5 zeolite. SEM investigation indicats that the zeolite films on the supports are defect free and the film thickness is approximately 8 μm. The permeances for H2, N2, CH4 and CO2 are 8.94×10-7, 3.27×10-7, 3.9×10-7, 3.14×10-7 and 0.874×10-7 mol·m2·s-1·Pa-1, respectively. The ideal selectivity of membrane at room temperature for H2/CO2, H2/N2, H2/CH4 are 2.84, 2.73 and 2.29, respectively.
基金Supported by the National Natural Science Foundation of China(21222602,21490585 and 21176117)National High-tech R&D Program of China(2015AA03A602)+4 种基金the Key Project of Chinese Ministry of Education(212060)the Outstanding Young Fund of Jiangsu Province(BK2012040)Young Fund of Jiangsu Province(BK20130915)the "Six Top Talents" and "333 Talent Project" of Jiangsu Province,a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Innovation Project for Graduate Student of Jiangsu Province(KYLX15-0790)
文摘This work presents the design of hollow fiber T-type zeolite membrane modules with different geometric configurations. The module performances were evaluated by pervaporation dehydration of ethanol/water mixtures. Strong concentration polarization was found for the modules with big membrane bundles. The concentration polarization was enhanced at high temperature due to the higher water permeation flux. The increase of feed flow could improve water permeation flux for the membrane modules with small membrane bundle.Computational fluid dynamics was used to visualize the flow field distribution inside of the modules with different configurations. The membrane module with seven bundles exhibited highest separation efficiency due to the uniform distribution of flow rate. The packing density could be 10 times higher than that of the tubular membrane module. The hollow fiber membrane module exhibited good stability for ethanol dehydration.
文摘A continuous and dense NaA zeolite membrane was synthesized by microwave heating method while employing a multi-step seeding LTA zeolite with the average size of 120 nm. The gas H2/N2 mixture separating results indicated that the mixture selectivity increased with increasing of synthesis times. In addition, selectivity of the three-step synthesis was higher than the value(3.74) expected from Kundsen diffusion.
基金sponsored by the National Natural Science Foundation of China(21908097,22035002)the National Key Research and Development Program of China(2021YFC2101203)+1 种基金Jiangsu Specially-Appointed Professors Program and"333 Talent Project"of Jiangsu ProvinceState Key Laboratory of Materials-Oriented Chemical Engineering(ZK202002)。
文摘Helium(He)is commercially produced from natural gas by low-temperature condensation.The process is energy extensive because of the extremely low He concentration(<0.3%)and the operation at cryogenic temperature.Herein we demonstrated DD3R zeolite membrane was efficient to extract He from natural gas at atmosphere temperature.The membrane performance was evaluated in terms of temperature,pressure and molar fractions.The overall membrane performance was dominated by the diffusivity selectivity.The single He permeance and ideal He/CH_(4) selectivity were 5.8×10^(-9)mol·m^(-2)·s^(-1)·Pa^(-1)and 79 under a feed pressure of 1.3 MPa.Even though He concentration was as low as 0.22%,the He permeance and He/CH_(4) mixture selectivity were 3.0×10^(-9)mol·m^(-2)·s^(-1)·Pa^(-1)and 44 at 0.7 MPa.During the longterm operation(~130 h)the membrane performance was stable even the feed mixture containing3.6%ethane as contaminations.The results approved the feasibility of DD3R zeolite membranes for He extraction from natural gas.
基金supported by the National Natural Science Foundation of China (Grant No. 21868012 and 21968009)Jiangxi Provincial Department of Science and Technology (20171BCB24005, 20181ACH80003, 20192ACB80003 and 20192BBH80024)。
文摘Growth process of the NaY zeolite membranes was investigated by fluoride-containing precursor synthesis gel.Compared with the fluoride-free precursor synthesis gel,the irregular NaY zeolite crystals were dissolved into amorphous by the fluoride-containing precursor synthesis gel initially,the amorphous contained the Y-type zeolite characteristic bands by the IR characterization.The fine square NaY zeolite crystals arose from the amorphous,which were accumulated and gradually grew into a dense NaY zeolite layer on the support surface after 6.5 h.Because the excessive NaY zeolites were dissolved by the strong alkaline and fluoride-containing precursor synthesis gel,there was plenty of amorphous on NaY zeolites layer for prolonging the crystallization time.The assynthesized NaY zeolite membranes had a good separation performance and repeatability for separation of 10 wt%methanol(MeOH)/methyl methacrylate(MMA) mixture by pervaporation,the flux and separation factor were(1.27 ± 0.07) kg·M^(-2)·h^(-1) and(4900 ± 1500) at 323 K,respectively.Besides,the NaY zeolite membranes were applied to separate the other short chain alcohol from the various alcohol/organic ester and alcohol/organic ether mixtures,the NaY zeolite membranes showed high short chain alcohol perm-selectivity.
基金supported by the Talent Introduction Fund of Yangzhou Universitythe Jiangsu Social Development Project-Science and Technology Support Program(BE2014613)+1 种基金Six Talent Peaks of Jiangsu province(2014-XCL-013)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Y-type zeolite membranes were synthesized by a two-step approach in which a particle seed layer was prepared by electrophoresis deposition(EPD) at first, followed by densification through secondary growth. The pre-seeding adopted the directing agent for Y-type zeolite synthesis serving as seeds. The effects of aging time of the directing agent, electrophoresis voltage and electrophoresis deposition time on seed layers quality as well as the quality of zeolite membranes were investigated. The results indicated that the zeolite seeds derived from the directing agent could be evenly deposited on substrate under certain EPD conditions. The XRD patterns of the seeded substrates after the secondary growth showed that the pure as-synthesized Y-type zeolite membranes had successfully grown on the substrates. The SEM images indicated that the substrate was covered by the highly intergrown zeolite crystals when the seeding solution employed the directing agent with an aging time of 2 days. The separation performance of zeolite membrane was evaluated using a CO_2/N2 mixture(with a mole ratio of 1:1) at different temperatures. Furthermore, the pervaporation measurements were carried out for the dehydration of isopropanol aqueous solutions with different mass fractions. The as-synthesized Y-type zeolite membranes exhibited a relatively high selectivity of water from isopropanol and sustainable permeation flux.
文摘Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous a-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.
基金We are grateful to the financial support from the National Natural Science Foundation of China (59789201) and the National Advanced Materials Committee of China (715-006-0122).
文摘A NaA zeolite membrane was synthesized on the surface of the stainless steel slab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 ~ 6 mm.
文摘A defect-free SAPO-44 zeolite membrane firmly anchored the porous α-Al2O3 plate substrate was successfully synthesized. The separating results showed that the H2/N2 and H2/CO permselectivities were higher than those of the corresponding Knudsen diffusion and the substrate, attaining 5.78 and 7.15 respectively.
文摘High quality A-type zeolite membranes, with enlarged area over 70 cm2, were successfully synthesized on a tubular a-Al2O3 support by applying the vacuum seeding method.