期刊文献+
共找到133,377篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic effect of Zr and Mo on precipitation and high-temperature properties of Al-Si-Cu-Mg alloys
1
作者 Chao Gao Bing-rong Zhang +2 位作者 Yin-ming Li Zhi-ming Wang Xiang-bin Meng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期71-81,共11页
This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,... This study focuses on finding a solution to the sharp decline in mechanical properties of Al-Si-Cu-Mg alloys due to rapid coarsening of traditional intermediate phases at high temperature.A new type of modified al oy,to be used in automobile engines at high temperatures,was prepared by adding Zr and Mo into Al-Si-Cu-Mg alloy.The synergistic effects of Zr and Mo on the microstructure evolution and high-temperature mechanical properties were studied.Results show that the addition of Zr and Mo generates a series of intermetallic phases dispersed in the alloy.They can improve the strength of the alloy by hindering dislocation movement and crack propagation.In addition,some nano-strengthened phases show coherent interfaces with the matrix and improve grain refinement.The addition of Mo greatly improves the heat resistance of the alloy.The extremely low diffusivity of Mo enables it to improve the thermal stability of the intermetallic phases,inhibit precipitation during aging,reduce the size of the precipitates,and improve the heat resistance of the alloy. 展开更多
关键词 Al-Si-cu-mg alloy high-temperature properties Zr-Mo-rich intermetallics nano-strengthening phases
下载PDF
Effect of secondary aging on microstructure and properties of cast Al-Cu-Mg alloy 被引量:1
2
作者 Rui-ming Su Yong-xin Jia +3 位作者 Jian Xiao Guang-long Li Ying-dong Qu Rong-de Li 《China Foundry》 SCIE CAS CSCD 2023年第1期71-77,共7页
To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructure... To obtain better comprehensive properties of cast Al-Cu-Mg alloys,the secondary aging(T6I6)process(including initial aging,interrupted aging and re-aging stages)was optimized by an orthogonal method.The microstructures of the optimized Al-Cu-Mg alloy were observed by means of scanning electron microscopy and transmission electron microscopy,and the properties were investigated by hardness measurements,tensile tests,exfoliation corrosion tests,and intergranular corrosion tests.Results show that the S phase andθ’phase simultaneously exist in the T6I6 treated alloy.Appropriately increasing the temperature of the interrupted aging in the T6I6 process can improve the mechanical properties and corrosion resistance of Al-Cu-Mg alloy.The optimal comprehensive properties(tensile strength of 443.6 MPa,hardness of 161.6 HV)of the alloy are obtained by initial aging at 180℃for 2 h,interrupted aging at 90℃for 30 min,and re-aging at 170℃for 4 h. 展开更多
关键词 cast Al-cu-mg alloy secondary aging mechanical properties corrosion resistance strengthening phase
下载PDF
Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy 被引量:5
3
作者 李慧中 刘若梅 +3 位作者 梁霄鹏 邓敏 廖慧娟 黄岚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1482-1490,共9页
The effects of pre-deformation following solution treatment on the microstructure and mechanical properties of aged high purity Al-Cu-Mg alloy were studied by tensile test, micro-hardness measurements, transmission el... The effects of pre-deformation following solution treatment on the microstructure and mechanical properties of aged high purity Al-Cu-Mg alloy were studied by tensile test, micro-hardness measurements, transmission electron microscopy and scanning electron microscopy. The micro-hardness measurements indicate that compared with un-deformed samples, the peak hardness is increased and the time to reach peak hardness is reduced with increasing pre-strain. Additionally, a double-peak hardness evolution behavior of cold-rolled (CR) samples was observed during aging. The results of TEM observation show that the number density of S′(Al2CuMg) phase is increased and the size is decreased in CR alloy with increase of pre-strain. The peak hardness and peak strength of the CR alloy are increased because of quantity increasing and refinement of S′ phase and high density dislocation. 展开更多
关键词 Al-cu-mg alloy PRE-DEFORMATION age strengthening PRECIPITATION MICROSTRUCTURE mechanical properties
下载PDF
Grain growth of Al-4Cu-Mg alloy during isothermal heat treatment 被引量:1
4
作者 Haitao Jiang Miaoquan Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期67-72,共6页
The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA) process was investigated and the kinetics of grain growth was analyzed, The grain growth during ... The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA) process was investigated and the kinetics of grain growth was analyzed, The grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy coincided with the Ostwald ripening theory. During isothermal heat treatment, both grain shape and the high volume fraction of solid phase have significant effects on grain growth. Therefore, a new grain growth model based on the Ostwald ripening theory was proposed taking into consideration the grain shape and the volume fraction of solid phase. By comparing the calculated results with the experimental results, it was confirmed that the present model could be applied to grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy in the SIMA process. 展开更多
关键词 grain growth SEMI-SOLID isothermal heat treatment Al-4cu-mg alloy
下载PDF
Anisotropic and temperature-dependent growth mechanism of S-phase precipitates in Al-Cu-Mg alloy in relation with GPB zones 被引量:4
5
作者 尹美杰 陈江华 +4 位作者 王双宝 刘自然 茶丽梅 段石云 伍翠兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期1-11,共11页
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a... By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology. 展开更多
关键词 aluminum alloy precipitation age hardening ANISOTROPY crystal growth
下载PDF
Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al-Cu-Mg alloy subjected to rapid cold stamping 被引量:10
6
作者 Cai-he FAN Ling OU +2 位作者 Ze-yi HU Jian-jun YANG Xi-hong CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2455-2462,共8页
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit... High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process. 展开更多
关键词 Al-cu-mg alloy rapid cold stamping nano-precipitate RE-DISSOLUTION re-precipitation
下载PDF
Corrosion behavior of 2024 Al-Cu-Mg alloy of various tempers 被引量:11
7
作者 K.S.GHOSH Md.HILAL Sagnik BOSE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3215-3227,共13页
Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization cu... Corrosion behavior of 2024 Al-Cu-Mg alloy of different tempers was assessed by potentiodynamic polarization studies in 3.5% NaCl solution, 3.5% NaCI+I.0% H2O2 solution and 3.5% NaCl solution at pH 12. Polarization curves showed shifting of corrosion potential (φPcor) towards more negative potential with increasing ageing time and shifting of φcorr in the positive direction with the addition of H2O2 in NaCl solution. Polarization curves in 3.5% NaCl solution at pH 12 exhibited distinct passivity phenomenon. Optical micrographs of the corroded surfaces showed general corrosion, extensive pitting and intergranular corrosion as well. Cyclic potentiodynamic polarization curves exhibited wide hysteresis loop and the mode of corrosion attack confirmed that the alloy states are susceptible to pit growth damage. Attempts were made to explain the observed corrosion behavior of the alloy of various tempers in different electrolytes with the help of microstructural features. 展开更多
关键词 2024 Al-cu-mg alloy ageing behavior electrochemical polarization PASSIVITY pitting potential
下载PDF
Microstructure evolution of Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing 被引量:6
8
作者 Ze-yi HU Cai-he FAN +2 位作者 Dong-sheng ZHENG Wen-liang LIU Xi-hong CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1816-1823,共8页
The microstructure evolution of spray formed and rapidly solidified Al-Cu-Mg alloy with fine grains during rapid cold punching and recrystallization annealing was investigated by transmission electron microscopy(TEM).... The microstructure evolution of spray formed and rapidly solidified Al-Cu-Mg alloy with fine grains during rapid cold punching and recrystallization annealing was investigated by transmission electron microscopy(TEM). The results show that the precipitates of fine-grained Al-Cu-Mg alloy during rapid cold punching and recrystallization annealing mainly consist of S phase and a small amount of coarse Al6Mn phase. With the increase of deformation passes, the density of precipitates increases, the size of precipitates decreases significantly, and the deformation and transition bands disappear gradually. In addition, the grains are refined and tend to be uniform. Defects introduced by rapid cold punching contribute to the precipitation and recrystallization, and promote nucleation and growth of S phase and recrystallization. Deformation and transition bands in the coarse grains transform into deformation-induced grain boundary during the deformation and recrystallization, which refine grains, obtain uniform nanocrystalline structure and promote homogeneous distribution of S phase. 展开更多
关键词 Al-cu-mg alloy microstructure evolution PRECIPITATE RECRYSTALLIZATION deformation band rapid cold punching
下载PDF
Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space 被引量:4
9
作者 Wanrun Jiang Yuzhi Zhang +1 位作者 Linfeng Zhang Han Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期12-19,共8页
Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy surface(PES)is the philosopher's stone for unraveling the nature of matter via atomistic simulatio... Combining first-principles accuracy and empirical-potential efficiency for the description of the potential energy surface(PES)is the philosopher's stone for unraveling the nature of matter via atomistic simulation.This has been particularly challenging for multi-component alloy systems due to the complex and non-linear nature of the associated PES.In this work,we develop an accurate PES model for the Al-Cu-Mg system by employing deep potential(DP),a neural network based representation of the PES,and DP generator(DP-GEN),a concurrent-learning scheme that generates a compact set of ab initio data for training.The resulting DP model gives predictions consistent with first-principles calculations for various binary and ternary systems on their fundamental energetic and mechanical properties,including formation energy,equilibrium volume,equation of state,interstitial energy,vacancy and surface formation energy,as well as elastic moduli.Extensive benchmark shows that the DP model is ready and will be useful for atomistic modeling of the Al-Cu-Mg system within the full range of concentration. 展开更多
关键词 potential energy surface deep learning Al-cu-mg alloy materials simulation
下载PDF
Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys 被引量:5
10
作者 M.S.SALLEH M.Z.OMAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3523-3538,共16页
The effects of Cu content on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg(x= 3,4,5and 6,mass fraction,%) alloys were studied.The samples were thixoformed at 50%liquid content and severa... The effects of Cu content on the microstructure and mechanical properties of thixoformed Al-6Si-xCu-0.3Mg(x= 3,4,5and 6,mass fraction,%) alloys were studied.The samples were thixoformed at 50%liquid content and several of the samples were treated with the T6 heat treatment.The samples were then examined by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray(EDX) spectroscopy and X-ray diffraction(XRD) analysis,as well as hardness and tensile tests.The results show that the cooling slope casting and thixoforming process promote the formation of very fine and well distributed intermetallic compounds in the aluminium matrix and the mechanical properties of the alloys increase considerably compared with the permanent mould casting.The results also reveal that as the Cu content in the alloy increases,the hardness and tensile strength of the thixoformed alloys also increase.The ultimate tensile strength,yield strength and elongation to fracture of the thixoformed heat-treated Al-6Si-3Cu-0.3Mg alloy are 298 MPa,201 MPa and 4.5%,respectively,whereas the values of the thixoformed heat-treated alloy with high Cu content(6%) are 361 MPa,274 MPa and 1.1%,respectively.The fracture of the thixoformed Al-6Si-3Cu-0.3Mg alloy shows a dimple rupture,whereas in the alloy that contains the highest Cu content(6%),a cleavage fracture is observed. 展开更多
关键词 Al-Si-cu-mg alloy Cu content THIXOFORMING T6 heat treatment mechanical properties
下载PDF
Effect of strain rate on microstructure and mechanical properties of spray-formed Al-Cu-Mg alloy 被引量:3
11
作者 Tong SHEN Cai-he FAN +3 位作者 Ze-yi HU Qin WU Yu-meng NI Yu-zhou CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第4期1096-1104,共9页
Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mec... Transmission electron microscopy(TEM),X-ray diffraction(XRD),electron backscattered diffraction(EBSD),and tensile tests were used to study the effects of strain rates(0.1,1 and 9.1 s^(-1))on the microstructure and mechanical properties of spray-formed Al-Cu-Mg alloys during large-strain rolling at 420℃.Results show that during hot rolling,the proportion of high-angle grain boundaries(HAGBs)and the degree of dynamic recrystallization(DRX)initially increase and then decrease,whereas the average grain size and dislocation density show the opposite trend with the increase of the strain rate.In addition,the number of S′phases in the matrix decreases,and the grain boundary precipitates(GBPs)become coarser and more discontinuous as the strain rate increases.When the strain rate increases from 0.1 to 9.1 s^(-1),the tensile strength of the alloy decreases from 492.45 to 427.63 MPa,whereas the elongation initially increases from 12.1%to 21.8%and then decreases to 17.7%. 展开更多
关键词 spray forming Al-cu-mg alloy strain rate MICROSTRUCTURE mechanical properties
下载PDF
Microstructure evolution of Al-4Cu-Mg alloy during semi-solid treatment
12
作者 Haitao Jiang Zhenli Mi +1 位作者 Di Tang Miaoquan Li 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期151-156,共6页
The microstructure of a cold-deformed Al-4Cu-Mg alloy during semi-solid treatment was investigated, which shows that grain detachment and grain spheroidization processes during the semi-solid treatment are very import... The microstructure of a cold-deformed Al-4Cu-Mg alloy during semi-solid treatment was investigated, which shows that grain detachment and grain spheroidization processes during the semi-solid treatment are very important to control the fabricated semi-solid microstructures. For the two different processes, the driving force comes from the external heat source and the reduction in total interfacial area, respectively. The evolution models of microstructure morphology in the two processes were presented based on microstructure observations. It can be found that these models are useful to provide a reasonable estimated critical time of the evolution of microstructure during the semi-solid treatment. 展开更多
关键词 Al-4cu-mg alloy SEMI-SOLID microstructure morphology evolution model
下载PDF
Effect of Mg composition on sintering behaviors and mechanical properties of Al-Cu-Mg alloy 被引量:2
13
作者 Min Chul OH Byungmin AHN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期53-58,共6页
Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure... Al-3Cu-Mg alloy was fabricated by the powder metallurgy(P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents(0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope(OM) and scanning electron microscope(SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength(TRS) of sintered materials decreased with greater Mg content(Al-3Cu-2.5Mg). However, Al-3Cu-0.5Mg alloy exhibited moderate TRS but higher specific strength than Al-3Cu without Mg addition. 展开更多
关键词 powder metallurgy Al-cu-mg alloy spinel structure liquid phase sintering
下载PDF
Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution 被引量:3
14
作者 李立 李慧中 +2 位作者 梁霄鹏 黄岚 洪涛 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期815-820,共6页
The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to... The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1. 展开更多
关键词 high-purity Al-cu-mg alloy hot compression flow stress processing map
下载PDF
Particles Morphology and Forming Analysis of Al-Si-Cu-Mg Alloys
15
作者 Shouren Wang Yiping Tang +2 位作者 Yang Qiao JaeHyung Cho Jixue Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期85-91,共7页
The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such... The study aims at observation of precipitation distribution micrograph and analysis of forming kinetics mechanism of microstructure particles of Al-Si-Cu-Mg alloys. The microstructure morphology of some particles such as primary silicon and precipitates from the matrix of Al-Si-Cu-Mg alloys is observed by OM,SEM and EDS. The primary silicon forming kinetics is analyzed by EBSD. Twin plane re-entrant edge growth mode results in the blocky or diamonded TRD morphology formation. The precipitates of Q-Al5Cu2Mg8Si6,θ-Al2Cu,β-Al5FeSi and ε-Mg2Si are characterized by EDS and they are distributed in the eutectic region. The forming kinetics of them is analyzed by DSC. Six peaks are present in particles formation in different temperature ranges.The particles forming are determined by the analysis of the DSC traces during heating and cooling of Al-Si-CuMg alloys. 展开更多
关键词 PRECIPITATES MORPHOLOGY kinetics Al-Si-cu-mg alloy DSC
下载PDF
Low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys 被引量:2
16
作者 Chen Lijia Wang Di +1 位作者 Che Xin Li Feng 《China Foundry》 SCIE CAS 2012年第1期39-42,共4页
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg ... Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively. 展开更多
关键词 permanent mold cast DIE-CAST aluminum alloy low-cycle fatigue fatigue life cyclic stress response
下载PDF
Existing form and action mechanism of minor scandium and zirconium in Al-Cu-Mg alloy 被引量:3
17
作者 姜锋 文康 +3 位作者 蹇海根 蒋春丽 赵娟 蒋龙 《Journal of Central South University》 SCIE EI CAS 2010年第1期19-23,共5页
In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of... In order to investigate the existing form and action mechanism of minor scandium (Sc) and zirconium (Zr) in AI-Cu-Mg alloy, microstructures of Al-4Cu-1Mg-Sc-Zr alloy under different conditions, including states of as-cast, homogenized, hot-rolled, as-solution and natural aged, were observed by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It is revealed that Sc and Zr are completely dissolved into the supersaturated solid solution in as-cast ingot, but grain refinement is not observed. Coffee-bean-like AI3(Sc, Zr) particles deposit during homogenization of ingot induce an increase in hardness. Al3(Sc, Zr) particles are slightly coarsened in as-solution samples, but they still maintain coherent to matrix, which indicates a high thermal stability of these particles. Good coherency ofAl3(Sc, Zr) particles makes some benefits for inhibiting recrystallization and reserving work-hardening. 展开更多
关键词 AI-cu-mg-Sc-Zr alloy SC ZR existing form action mechanism
下载PDF
Localized dissolution initiated at single and clustered intermetallic particles during immersion of Al-Cu-Mg alloy in sodium chloride solution
18
作者 骆晨 Xiaorong ZHOU George E.THOMPSON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2800-2809,共10页
Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information o... Aiming at understanding how intermetallic phases response when AA2024-T3 aluminium alloy is exposed to chloridecontainingaqueous medium, scanning electron microscopy was employed to provide morphological information on alloy surfacebefore and after corrosion testing. Energy dispersive X-ray spectroscopy was carried out to determine compositional change inintermetallic particles. Atomic force microscopy was used to examine topographical variation introduced by the reactions ofintermetallic phases. Transmission electron microscopy combined with ultramicrotomy was carried out on dealloyed Al2CuMgparticles and their periphery region. It is found that dealloyed Al2CuMg particles exhibited porous, polycrystalline structurecomprised of body-centred cubic copper particles with sizes of 5 to 20 nm. Aluminium matrix started to trench in the periphery ofAl2CuMg particles at the early stage of dealloying. Development of trenching in Al.Cu.Fe.Mn.(Si) particle’s periphery was notuniform and took longer time to initiate than Al2CuMg dealloying. Localized corrosion at a cluster of Al2CuMg and Al2Cu particleswas mainly associated with Al2CuMg particles. 展开更多
关键词 aluminium alloy intermetallic particle localized dissolution DEalloyING TRENCHING
下载PDF
Microstructural Evolution in Cu-Mg Alloy Processed by Conform
19
作者 Lianpeng Song Yuan Yuan Zhimin Yin 《International Journal of Nonferrous Metallurgy》 2013年第3期100-105,共6页
The objective of this study is to investigate the possibility of continuous extrusion forming (Conform process) and microstructural evolution the of Cu-Mg alloy. The results indicate that Conform process can break as-... The objective of this study is to investigate the possibility of continuous extrusion forming (Conform process) and microstructural evolution the of Cu-Mg alloy. The results indicate that Conform process can break as-cast grains and refine the structure, meanwhile. This process can improve the degree of the structure homogeneity. The TEM and EBSD techniques were used to investigate the morphology, grain size and misorientation of the samples at cavity entrance and cavity export. Refined structures after shear deformation include broken grains and subgrains formed by dislocation reconstruction. Due to the relatively high deformation temperature, dynamic recrystallization occurred during deformation. The subgrain rotation nucleation took place, and grain boundary migration resulted in grain growth. However, the coarse grains were refined by anneal twins. 展开更多
关键词 cu-mg alloy MICROSTRUCTURAL Evolution CONFORM Dynamic RECRYSTALLIZATION
下载PDF
BEHAVIOUR AND MECHANISM OF STRESS CORROSION CRACKING FOR Al-Li-Cu-Mg ALLOY
20
作者 WANG Zhengfu ZHU Ziyong KE Wei Corrosion Science Laboratory,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,ChinaZHANG Yun HU Zhuangqi Institute of Metal Research,Academia Sinica,Shenyang,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第11期391-395,共5页
Studies were made of the influence of aging conditions and applied potentials on the stress corrosion carcking(SCC)susceptibility for an Al-Li-Cu-Mg alloy by slow strain rate technique.The relationship between the rel... Studies were made of the influence of aging conditions and applied potentials on the stress corrosion carcking(SCC)susceptibility for an Al-Li-Cu-Mg alloy by slow strain rate technique.The relationship between the relative hydrogen content on specimen surface,the applied potentials and elapsed time has also been examined.The SCC susceptibility was found to be dependent on aging conditions in which the peak aged condition gave the worst SCC resistance and the natural aged condition had the best one. The SCC susceptibility and surface hydrogen content relates to the applied potentials. The anodic potentials increase SCC susceptibility,while the cathodic ones below the critical potential accelerate SCC.It is considered that both the anodic dissolution and 展开更多
关键词 Al-Li alloy stress corrosion cracking anodic dissolution hydrogen embrittlement
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部