期刊文献+
共找到133,963篇文章
< 1 2 250 >
每页显示 20 50 100
Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method 被引量:4
1
作者 J.ARUL MARY A.MANIKANDAN +3 位作者 L.JOHN KENNEDY M.BOUOUDINA R.SUNDARAM J.JUDITH VIJAYA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1467-1473,共7页
Cu-Ni alloy nanoparticles were prepared by a microwave combustion method with the molar ratios of CU2+ to Ni2+ as 3:7, 4:6, 5:5, 6:4 and 7:3. The as-prepared samples were characterized by XRD, HR-SEM, EDX and V... Cu-Ni alloy nanoparticles were prepared by a microwave combustion method with the molar ratios of CU2+ to Ni2+ as 3:7, 4:6, 5:5, 6:4 and 7:3. The as-prepared samples were characterized by XRD, HR-SEM, EDX and VSM. XRD and EDX analyses suggest the formation of pure alloy powders. The average crystallite sizes were found to be in the range of 21.56-33.25 nm. HR-SEM images show the clustered/agglomerated particle-like morphology structure. VSM results reveal that for low Ni content (CusNis, Cu6Ni4 and Cu7Ni3), the system shows paramagnetic behaviors, whereas for high Ni content (Cu3Ni7 and Cu4Ni6), it becomes ferromagnetic. 展开更多
关键词 microwave combustion NANOPARTICLES cu-ni alloys magnetization property
下载PDF
Influence of Cooling Conditions in Casting Cu-Ni Alloy Based on Numerical Simulation 被引量:3
2
作者 庞玉华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期68-72,共5页
The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of compu... The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of computer simulation of casting solidification. Based on the casting process of the Cu-Ni alloy, the simulation software of diathermanous—flowing—stress coupling ProCAST was used to simulate the Cu-Ni alloy solidification process about the defects and temperature field. By combining experimental results with the simulation results, the quality of casting on some cooling conditions were analyzed. Furthermore, a better cooling condition for solidification process of the Cu-Ni alloy was chosen to improve the quality of the casting. The simulation results indicate that the quality of Cu-Ni alloy casting is the best when it is on the cooling condition of the permanent mold with the insulated riser system. 展开更多
关键词 cooling condition cu-ni alloy SOLIDIFICATION numerical simulation PROCAST
下载PDF
Electrolytic production of Cu-Ni alloys in CaCl_2-Cu_2S-NiS molten salt 被引量:2
3
作者 Levent KARTAL Servet TIMUR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期2143-2150,共8页
An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic co... An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min. 展开更多
关键词 molten salt electrolysis ELECTRO-REDUCTION copper extraction copper sulfide nickel sulfide cu-ni alloys
下载PDF
INFLUENCE OF THE MICROSTRUCTURE OF Cu-Ni ALLOY ON ITS CORROSION RESISTANCE 被引量:1
4
作者 Zhu Xiaolong 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1992年第4期51-55,共5页
The microstructures of two kinds of Cu-Ni alloys were observed by TEM.The results show that one of the alloys is a homogeneous solid solution.The other contains discontinuous precipitates at some grain boundaries,and ... The microstructures of two kinds of Cu-Ni alloys were observed by TEM.The results show that one of the alloys is a homogeneous solid solution.The other contains discontinuous precipitates at some grain boundaries,and the precipitate is a phase rich in Fe-Ni.By monitoring the corrosion potential(E_(con))in artifical seawater and exposure to natural seawater for a long time,it is found that the E_(con)of the former alloy steadily decreases,while the E_(con)of the latter decreases a little and fluctuates,and the corrosion rate of the former is clearly lower than that of the latter.Aanalyses of SEM and EDX show that the corrosion product film of the former is thin,uniform,compact and rich in nickel,and the film of the latter is thick,loose and covered with numerous deposits.Additionally serious intergranular corrosion occurs in the underlying substrate of the latter.The author proposes that the intergraular corrosion results from preferential dissolution of discontinuous precipitates at grain boundaries.In addition,the protective characteristics of corrosion product films are related not only to the enrichment of nickel but also to their compactness. 展开更多
关键词 cu-ni alloy MICROSTRUCTURE corrosion resistance seawater corrosion POTENTIAL corrosion product film
下载PDF
Application of the Embedded-atom Method to Liquid Binary Cu-Ni Alloys 被引量:1
5
作者 Hongbo LIU Kuiying CHEN Zhuangqi HU (State Key Lab. of RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China)Geying AN(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第2期117-122,共6页
A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species ... A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species of atoms is taken as a function of the two-body potential for the pure metals with a unique form which yields alloy models with the same invariance to electron density transformations as monoatomic models. Faber-Ziman structure factors have been computed by molecular dynamics simulation on the base of this model. The results are in good agreement with experimental data given by Waseda, thus supporting the overall validity of the approach, especially for cross potential of Cu-Ni pair. Further, a detailed description of structure of binary liquid Cu-Ni alloys with different compositions have been performed using pair analysis and bond orientational order method etc., and then the chemical short range order has also been examined to reveal the structural characterization. 展开更多
关键词 REV LI Application of the Embedded-atom Method to Liquid Binary cu-ni alloys Cu NI
下载PDF
Effect of Microstructure and Sulfide on Corrosion of Cu-Ni Alloys in Seawater
6
作者 Xiaolong ZHU (General Research Institute for Nonferrous Metals, Beijing 100088, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期411-415,共5页
The microstructure and the corrosion product films have been investigated on Cu-Ni alloys by TEM, SEM, AES and electrochemical technique as well as natural seawater exposure tests. Experimental results showed that the... The microstructure and the corrosion product films have been investigated on Cu-Ni alloys by TEM, SEM, AES and electrochemical technique as well as natural seawater exposure tests. Experimental results showed that the alloys had two kinds of microstructure, i.e. recrystallizatjon and incomplete recrystallization. In synthetic seawater containing 2x10^-6 S^2-, the stability of the alloy increased with the increase of deformation and annealing temperature, i.e., the degree of recrystallization. After exposure to natural seawater for different periods of time, the corrosion product films of the recrystallized alloy were rich in Ni and compact, and there were cracks in the outer layer which contained a small amount of S; the films of the alloy of incomplete recrystallization became thick, loose and porous, and obviously of layered structure, and the intergranular corrosion took place in the underlying substrate Besides, a great amount of seawater substance existed in the outer layer and some sulfur was found within the grain boundaries that prefer to corrode. The accelerating effect of sulfides in corrosion of Cu-Ni alloys in seawater is attributed to the coexistence and absorption of sulfides and carbides promoting the preference of corrosion where they absorb, and the formation of dissolvable Cu2S results in keeping the surface of the alloys in the active state. 展开更多
关键词 Effect of Microstructure and Sulfide on Corrosion of cu-ni alloys in Seawater CU NI
下载PDF
A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment 被引量:4
7
作者 Y.H.Liu Z.R.Zhang +5 位作者 J.Wang Y.Li H.X.Li L.Y.Jia J.H.Wang J.S.Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期720-734,共15页
Inferior absolute strength and dissolution properties are the main bottlenecks for the widespread application of dissolvable magnesium alloys in complex working environments for unconventional oil and gas resources.He... Inferior absolute strength and dissolution properties are the main bottlenecks for the widespread application of dissolvable magnesium alloys in complex working environments for unconventional oil and gas resources.Here,a novel functional peak-aged Mg-9.5Gd-2.7Y-0.9Zn-0.8Cu-0.4Ni(wt.%) alloy for fracturing tools is reported,and it possesses an ultimate tensile strength of 457.6 MPa,ultimate compressive strength of 620.7 MPa and dissolution rate of ~43.7 mg·cm^(-2)·h^(-1) in 3 wt.% KCl solutions at 93℃.The excellent strength of the agedalloy is primarily attributed to the combination of grain refinement,long-period stacking ordered(LPSO) strengthening,and precipitation strengthening induced by stacking fault and β’ phase,among which the precipitation strengthening is dominant.Further investigations confirm that the corrosion is triggered from the micro-galvanic coupling between the Mg matrix and the cathodic lamellar and block LPSO phases.Strip-shaped corrosion pits along with LPSO phases are subsequently formed,significantly accelerating corrosion.The β’ precipitates can effectively improve the strength without compromising the dissolution rate because of their nanoscale size.This study provides an excellent material selection for dissolvable fracturing tools and presents a strategy by which a synergistic combination of strength and dissolution rate is achieved via peak-aging treatment. 展开更多
关键词 Dissolvable magnesium alloy Peak-aging treatment Mechanical properties Micro-galvanic corrosion
下载PDF
Effect of pre-annealing on thermal stability of amorphous Zr-Cu-Ni alloy
8
作者 LIUYan HUIXidong WANGHuanrong 《Rare Metals》 SCIE EI CAS CSCD 2003年第4期270-275,共6页
The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy... The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy (HRTEM) techniques. It has been observed thatthe supercooled liquid region decreases with increasing the annealing time under isothermalconditions, indicating that the thermal stability of the amorphous Zr_(70)Cu_(20)Ni_(10) alloydecreases gradually. HRTEM observations reveal that there exist some ordered atomic clusters in theamorphous matrix at the relaxation stage. These ordered atomic clusters can be regarded asprecursors for the precipitation of the crystalline phases in the subsequent crystal-lizationprocess. The reasons resulting in the decrease in thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy with annealing time are discussed through the Gaussian decomposition forthe radial distribution function of the amorphous Zr_(70)Cu_(20)Ni_(10) alloy. 展开更多
关键词 PRE-ANNEALING thermal stability amorphous alloy Gaussian decomposition DSC HRTEM
下载PDF
Hypercooling and the Specific Heat Capacity of Cu-Ni Alloy
9
作者 YANG Chun CHEN Min +1 位作者 GUO Zeng-Yuan WEI Bing-Bo 《Chinese Physics Letters》 SCIE CAS CSCD 2001年第1期126-128,共3页
The average heat capacities of the undercooled Cu-25%Ni,Cu-50%Ni,Cu-50%Ni and Cu-75%Ni melts were derived by using the glass fluxing technique.The undercoolings of the above alloys were 381,380,349 and 431K,respective... The average heat capacities of the undercooled Cu-25%Ni,Cu-50%Ni,Cu-50%Ni and Cu-75%Ni melts were derived by using the glass fluxing technique.The undercoolings of the above alloys were 381,380,349 and 431K,respectively,which exceed the critical undercooling of the classical nucleation theory.A detailed analysis of the heat transfer condition during the solidification process was carried out,which suggested a linear relationship between the time duration of thermal arrest ta and the undercoolingΔT.The hypercooling points of the alloys,derived from the relationship between ta andΔT,were determined to be 457.7,461.1,448.4 and 528.K,respectively. 展开更多
关键词 technique. alloyS SOLIDIFICATION
下载PDF
Corrosion behavior of B30 Cu-Ni alloy and anti-corrosion coating in marine environment 被引量:2
10
作者 李庆芬 李春辉 +1 位作者 许立坤 刘光洲 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期161-165,共5页
The corrosion behavior of B30 Cu-Ni alloy in a sterile seawater and a SRB solution was investigated. The results show that the corrosion potential of specimen in the SRB solution is much lower than that in the sterile... The corrosion behavior of B30 Cu-Ni alloy in a sterile seawater and a SRB solution was investigated. The results show that the corrosion potential of specimen in the SRB solution is much lower than that in the sterile seawater. The polarization resistance of specimen in the SRB solution decreases quickly after a period immersion and becomes much lower than that in the sterile seawater. It is concluded that the SRB accelerates the corrosion process of B30 Cu-Ni alloy greatly. An anti-corrosion electroless Ni-P coating was produced and applied to the alloy. The results show that specimens coated with Ni-P plating exhibit favorable corrosion resistance property in SRB solution. Severe pitting corrosion appears on the uncoated specimens in the SRB solution when the coated specimens are still in good condition. The anti-corrosion mechanism of Ni-P plating was analyzed. It is concluded that coating the B30 Cu-Ni alloy with electroless Ni-P plating is an effective technique against the attack of SRB in marine environment. 展开更多
关键词 镍合金 微观特性 抗腐蚀特性 生物技术
下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system
11
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
12
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
13
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
14
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
Hot deformation behavior and processing map of Cu-Ni-Si-P alloy 被引量:6
15
作者 张毅 刘平 +3 位作者 田保红 刘勇 李瑞卿 许倩倩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2341-2347,共7页
The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation ene... The high-temperature deformation behavior of Cu-Ni-Si-P alloy was investigated by using the hot compression test in the temperature range of 600-800 ℃ and strain rate of 0.01-5 s-1. The hot deformation activation energy, Q, was calculated and the hot compression constitutive equation was established. The processing maps of the alloy were constructed based on the experiment data and the forging process parameters were then optimized based on the generated maps for forging process determination. The flow behavior and the microstructural mechanism of the alloy were studied. The flow stress of the Cu-Ni-Si-P alloy increases with increasing strain rate and decreasing deformation temperature, and the dynamic recrystallization temperature of alloy is around 700 ℃. The hot deformation activation energy for dynamic recrystallization is determined as 485.6 kJ/mol. The processing maps for the alloy obtained at strains of 0.3 and 0.5 were used to predict the instability regimes occurring at the strain rate more than 1 s-1 and low temperature (〈650 ℃). The optimum range for the alloy hot deformation processing in the safe domain obtained from the processing map is 750-800 ℃ at the strain rate of 0.01-0.1 s i The characteristic microstructures predicted from the processing map agree well with the results of microstructural observations. 展开更多
关键词 cu-ni-Si-P alloy hot compression deformation dynamic recrystallization constitutive equation processing maps
下载PDF
Effect of pH value and calcination temperature on synthesis and characteristics of Cu-Ni nano-alloys
16
作者 María de los A.CANGIANO Manuel W.OJEDA María del C.RUIZ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3664-3677,共14页
Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morpholog... Cu?Ni nano-alloys were prepared using precursors synthesized by the citrate-gel method. The effects of initial solution pH value and calcination temperature on the composition, crystalline structure, purity, morphology, homogeneity and grain size of Cu?Ni nanoparticles were investigated. Both the parameters significantly affect the crystalline structure, composition and grain size. Cu?Ni alloys prepared at pH value of 1 do not contain impurities, and their compositions are Cu0.42Ni0.58, Cu0.45Ni0.55 and Cu0.52Ni0.48 reduced at 300, 400 and 500 °C, respectively. The grain size grows with the increase of calcination temperature for the precursor prepared at pH values of 1.6 and 3. The Ni content of the alloys gradually increases with the increase of calcination temperature at pH value of 3. 展开更多
关键词 nanostructured cu-ni alloys chemical synthesis physicochemical characteristics pH value calcination temperature
下载PDF
Microstructure and properties of Cu-Ni-Si-Zr alloy after thermomechanical treatments 被引量:13
17
作者 Xiang-Peng Xiao Bai-Qing Xiong +3 位作者 Qiang-Song Wang Guo-Liang Xie Li-Jun Peng Guo-Xing Huang 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期144-149,共6页
The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, co... The effect of thermomechanical treatments on the microstructures and properties of Cu-2.1Ni-0.5Si- 0.2Zr alloy was investigated. The hot-rolled plates were solution treated at 920 ℃ for 1.5 h, quenched into water, cold rolled by 70 % reduction in thickness, and then aged at 400, 450 and 500 ℃for various times. The variation in tensile strength and electrical conductivity of the alloy was measured as a function of the aging time. The results show the peak strength value of 665 MPa for the alloy aged at 450 ℃ for 2 h. However, the electrical conductivity is observed to reach a maximum of 47 % IACS aged at 450℃for 8 h. OM, SEM, and TEM were used for microstructural inspection of the alloy. Precipitation occurs preferentially at deformation bands in the cold-rolled alloy. Properties behavior is discussed in the light of microstructural features. 展开更多
关键词 cu-ni-Si-Zr alloy Precipitation ELECTRICALCONDUCTIVITY Tensile strength Microstructural features
下载PDF
Microstructural Changes of Cu-Ni-Si Alloy during Aging 被引量:6
18
作者 QimingDONG DongmeiZHAO +2 位作者 PingLIU BuxiKANG JinliangHUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期99-102,共4页
Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-l.ONi-0.25Si (wt pct)... Age hardening in Cu-3.2Ni-0.75Si (wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-l.ONi-0.25Si (wt pct) alloy. On other hand an immediate increase of the yield strength characterizes the aging of the alloy. This is followed by the regions of constant yield strength and further by a peak. The microstructure of the alloy was studied by, means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Spinodal decomposition takes place followed by nucleation of the ordering coherent (Cu,Ni)3Si particles, further precipitation annealing coherent δ-Ni2Si nucleated within the (Cu,Ni)3Si particle. Any change of the yield strength can be described by an adequate change of the structure in the sample. The nature of the aging curves with a 'plateau' is discussed. The formulas of Ashby and Labusch can be used to explain the precipitation. 展开更多
关键词 Copper alloy TRANSFORMATION Ageing Spinodal decomposition ORDERING Yield strength
下载PDF
Microstructure and Properties of Cu-Ni Alloys 被引量:2
19
作者 谢佑卿 马柳莺 +2 位作者 张晓东 邹平 赵礼颖 《Science China Mathematics》 SCIE 1993年第5期612-623,共12页
A systematic analysis has been conducted on the Cu-Ni system. The properties relative to the electronic structure and atomic configuration are as a function of concentration for the Cu-Ni system. According to the stat... A systematic analysis has been conducted on the Cu-Ni system. The properties relative to the electronic structure and atomic configuration are as a function of concentration for the Cu-Ni system. According to the state parameters of the characteristic atoms, variations of the lattice constant, atomic magnetic moment, cohesive energy and thermodynamic properties of the alloys with the concentration have been calculated. The exact explanations are also given for the approximately linear decrease of the magnetic moment per Ni atom of the alloys with Cu concentration, for the presence of the giant moments associated with atomic clustering, and for the effect of the giant lattice distortion. 展开更多
关键词 cu-ni system electronic structure ATOMIC configuration magnetic MOMENT LATTICE constant THERMODYNAMIC properties.
原文传递
Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging 被引量:15
20
作者 雷前 李周 +3 位作者 潘志勇 汪明朴 肖柱 陈畅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1006-1011,共6页
The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electri... The precipitation behaviors of the Cu-Ni-Si alloys during aging were studied by analyzing the variations of electric conductivity.The Avrami-equation of phase transformation kinetics and the Avrami-equation of electric conductivity during aging were established for Cu-Ni-Si alloys,on the basis of linear relationship between the electric conductivity and the volume fraction of precipitates,and the calculation results coincide well with the experiment ones.The transformation kinetics curves were established to characterize the aging process.The characteristics of precipitates in the supersaturated solid solution alloy aged at 723 K were established,and the results show that the precipitates areβ-Ni3Si andδ-Ni2Si phases. 展开更多
关键词 CU cu-ni-Si alloy DYNAMICS phase transformation PRECIPITATION electrical conductivity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部