期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Application of NSR-AISC Method in Reserve Estimation and Technical Economic Evaluation of Low-Grade Polymetallic Deposits: Taking a Low-Grade Copper-Molybdenum Mine in Guangdong Province as an Example
1
作者 Yao Xue Tengfei Li 《World Journal of Engineering and Technology》 2024年第3期731-741,共11页
The development and utilization of low-grade polymetallic deposits with strategic mineral resources is one of the important measures to alleviate the current high dependence on strategic mineral resources in China. Ho... The development and utilization of low-grade polymetallic deposits with strategic mineral resources is one of the important measures to alleviate the current high dependence on strategic mineral resources in China. However, domestic mining enterprises and most mining consulting and design institutes usually use general industrial indicators to carry out reserve estimation and technical and economic feasibility studies on low-grade polymetallic deposits, which cannot truly reflect the economic value of such deposits. The article expounds on the definitions of net return value (NSR) and on-site total maintenance cost (AISC) of common ore smelters in the evaluation of overseas mineral resources. Taking a low-grade polymetallic copper-molybdenum mine in Guangdong Province as an example, comparing the research results showed the NSR-AISC method and the general industrial index method in low-grade polymetallic deposit. There are huge differences in the results of reserve estimation;through the further introduction of Taylor’s formula and the research results on the relationship between investment intensity and production scale, a more reasonable mine life and investment scale are recommended, and a more in-depth comparative study has been carried out in the dimension of technical and economic indicators. Based on the comparative study of the above two methods in reserve estimation and the evaluation results of technical and economic indicators, the author believes that the NSR-AISC method can better reflect the true value of low-grade polymetallic ore projects, and should be popularized and applied in resource evaluation and development practice. This article further describes the application status of the NSR-AISC method for reserve estimation and the evaluation of technical economic indicators, and suggests the main points that should be paid attention to in the use of the NSR-AISC method. 展开更多
关键词 NSR-AISC Method General Industrial Indicators Low-Grade polymetallic ore
下载PDF
Late Mesozoic Ore-forming Events in the Ningwu Ore District, Middle-Lower Yangtze River Polymetallic Ore Belt, East China: Evidence from Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Granodioritic Stocks 被引量:12
2
作者 DUAN Chao LI Yanhe +3 位作者 HOU Kejun YUAN Shunda LIU Jialin ZHANG Cheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第3期719-736,共18页
Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetall... Late Mesozoic volcanic-subvolcanic rocks and related iron deposits, known as porphyry iron deposits in China, are widespread in the Ningwu ore district (Cretaceous basin) of the middle-lower Yangtze River polymetallic ore belt, East China. Two types of Late Mesozoic magmatic rocks are exposed: one is dioritic rocks closely related to iron mineralization as the hosted rock, and the other one is granodioritic (-granitic) rocks that cut the ore bodies. To understand the age of the iron mineralization and the ore-forming event, detailed zircon U-Pb dating and Hf isotope measurement were performed on granodioritic stocks in the Washan, Gaocun-Nanshan, Dongshan and Heshangqiao iron deposits in the basin. Four emplacement and crystallization (typically for zircons) ages of granodioritic rocks were measured as 126.1±0.5 Ma, 126.8±0.5 Ma, 127.3±0.5 Ma and 126.3±0.4 Ma, respectively in these four deposits, with the LA-MC-ICP-MS zircon U-Pb method. Based on the above results combined with previous dating, it is inferred that the iron deposits in the Ningwu Cretaceous basin occurred in a very short period of 131-127 Ma. In situ zircon Hf compositions of εHf(t) of the granodiorite are mainly from -3 to -8 and their corresponding 176Hf/177Hf ratio are from 0.28245 to 0.28265, indicating similar characteristics of dioritic rocks in the basin. We infer that granodioritic rocks occurring in the Ningwu ore district have an original relationship with dioritic rocks. These new results provide significant evidence for further study of this ore district so as to understand the ore-forming event in the study area. 展开更多
关键词 Zircon U-Pb age Hf isotope porphyry iron deposit Ningwu ore district Middle–Lower Yangtze River polymetallic ore belt
下载PDF
Multi-scale impact crushing characteristics of polymetallic sulphide ores 被引量:6
3
作者 Wen-tao ZHOU Yue-xin HAN +2 位作者 Yong-sheng SUN Jin-lin YANG Shao-jian MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1929-1938,共10页
The effects of crushing energy, ore hardness and particle size of cassiterite polymetallic sulphide ore and lead-zinc polymetallic sulphide ore on the crushing characteristics during impact crushing were investigated ... The effects of crushing energy, ore hardness and particle size of cassiterite polymetallic sulphide ore and lead-zinc polymetallic sulphide ore on the crushing characteristics during impact crushing were investigated by mineral liberation analyzer(MLA) and drop weight test. The results show that both ores contain pyrrhotite, sphalerite, jamesonite, gangue mica and quartz except cassiterite. Cassiterite is closely associated with sulphide and quartz to form aggregates, which are mixed with each other in the form of intergrowth or symbiotic disseminated fine grains. Cassiterite has a significant impact on ore crushing characteristics. Ore hardness is negatively correlated with the product of crushing parameters of A and b, i.e. A×b, the effect of crushing energy on crushing fineness is related to crushing parameters A and b, and the influence degree increases with the increase of A. The influence degree increases with the increase of b when crushing energy ECS is less than 1 kW·h/t, and the influence degree decreases with the increase of b when crushing energy ECS is greater than 1 kW·h/t. The impact of crushing energy on crushing fineness is greater than that of ore particle size when the crushing energy is lower;on the contrary, the impact of ore particle size on crushing fineness is greater than that of crushing energy when crushing energy is higher. 展开更多
关键词 polymetallic sulfide ore crushing fineness crushing parameters crushing energy ore particle size
下载PDF
Genetic Types and Metallogenic Model for the Polymetallic Copper–Gold Deposits in the Tongling Ore District, Anhui Province, Eastern China 被引量:6
4
作者 FU Zhongyang XU Xiaochun +4 位作者 HE Jun FAN Ziliang XIE Qiaoqin DU Jianguo CHEN Fang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2019年第1期88-110,共23页
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurre... The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere. 展开更多
关键词 polymetallic copper–gold deposits genetic types METALLOGENIC model magmatic–hydrothermal system TONGLING ore district Anhui Province
下载PDF
Metallogeny of the Baiyangping Lead-Zinc Polymetallic Ore Concentration Area, Northern Lanping Basin of Yunnan Province, China 被引量:5
5
作者 WANG Xiaohu SONG Yucai +3 位作者 ZHANG Hongrui LIU Yingchao PAN Xiaofei GUO Tao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第4期1486-1507,共22页
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l... The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship. 展开更多
关键词 eastern Tethyan metallogenic domain Lanping Basin Baiyangping ore concentration area lead-zinc polymetallic ore deposit genesis of deposit
下载PDF
Ore Genesis for Stratiform Ore Bodies of the Dongfengnanshan Copper Polymetallic Deposit in the Yanbian Area, NE China:Constraints from LA-ICP-MS in situ Trace Elements and Sulfide S–Pb Isotopes 被引量:4
6
作者 LU Siyu REN Yunsheng +3 位作者 YANG Qun SUN Zhenming HAO Yujie SUN Xinhao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1591-1606,共16页
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform o... The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks. 展开更多
关键词 LA-ICP-MS in situ trace element S-Pb isotope VMS-type STRATIFORM orebodies Dongfengnanshan copper polymetallic deposit Tianbaoshan ore district
下载PDF
Bioleaching of complex polymetallic sulfide ores by mixed culture 被引量:3
7
作者 王军 赵红波 +1 位作者 覃文庆 邱冠周 《Journal of Central South University》 SCIE EI CAS 2014年第7期2633-2637,共5页
Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction r... Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface. 展开更多
关键词 polymetallic sulfide ores JAMESONITE MARMATITE PYRRHOTITE BIOLEACHING
下载PDF
Sulfur Isotopes Geochemistry of the Nage Cu-Pb Polymetallic Deposit,Southeast Guizhou Province,China 被引量:1
8
作者 LONG Xuan-lin1,ZHOU Jia-xi2,HUANG Zhi-long2,WANG Jing-song1,YANG De-zhi1,3,FAN Liang-wu2,BAO Guang-ping2,LIU Yong-kun1(1. The 102 Geological Team,Guizhou Bureau of Exploration and Development of Geology and Mineral Resources,Zunyi 563003,China 2. State key Laboratory of Ore Deposits Geochemistry,Institute of Geochemistry,Chinese Academy of Science,Guiyang 550002,China 3. China University of Geosciences(Wuhan) ,Wuhan 430074,China) evidence. 《矿物学报》 CAS CSCD 北大核心 2009年第S1期128-128,共1页
The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic S... The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group. 展开更多
关键词 PB Sulfur Isotopes Geochemistry of the Nage cu-pb polymetallic Deposit Southeast Guizhou Province China CU
下载PDF
Mineralogical Characterization of a Polymetallic Sulfide Ore to Improve Silver Recovery 被引量:1
9
作者 陈代雄 XIAO Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期501-507,共7页
Based on the mineralogical characterization for the polymetallic sulfide ore, the way to improve silver recovery was studied. The results showed that silver was the most valuable metal whose grade was 448.82 g/t Ag, w... Based on the mineralogical characterization for the polymetallic sulfide ore, the way to improve silver recovery was studied. The results showed that silver was the most valuable metal whose grade was 448.82 g/t Ag, while 0.118% Cu, 1.65% Pb and 1.06% Zn may be comprehensively utilizated. The main silver-bearing minerals were argent and aregentite which accounted for 87.18% of total silver. Argentite and other metal minerals were distributed in the gangue minerals in complex forms. Argentite grains of 33.76% minus 50 μm indicated that a fine grinding scheme was necessary to enhance the degree of dissociation, and meanwhile selective grinding must be considered to prevent a complete grinding of coarse grains. The optimum regrinding fineness in the Cu flotation was determined as 73% minus 37 μm, while grains of 68.5% minus 74 μm in one-stage grinding remained unchanged as much as possible. Consequently, silver recovery increased to 2.68%, as well as the content of Pb simultaneously decreased from 7.26% to 2.68% in the Cu concentrate. From the lead pyrometallurgical point of view, recovering larger amounts of silver and lead at the expense of decreasing the grade of lead to a suitable level is not only economically viable for the plant, but also convenient for subsequent processing. Silver and lead recovery increased to 13.18% and 12.58%, respectively, while the Pb grade decreased from 53.1% to 46.12% for the Pb concentrate. 展开更多
关键词 polymetallic sulfide ore mineralogy characterization regrinding silver recovery
下载PDF
Metallogenic Dynamics of Zhashui Ag-Pb Polymetallic Ore Deposit in Shaanxi,China
10
作者 Wei Junhao Li Jianwei Wang Siyuan(Faculty of Earth Resources, China University of Geosciences, Wuhan 430074)Shi Sen(Geological Investigation Bureau of MGMR, Beijing 100081) 《Journal of Earth Science》 SCIE CAS CSCD 1996年第2期178-182,共5页
Zhashui Ag-Pb polymetallic ore deposit is located in northern Qinling geosyncline. In this paper, its geological features and metallogenic background are introduced. The volcanic dynamics,physical-chemical conditions ... Zhashui Ag-Pb polymetallic ore deposit is located in northern Qinling geosyncline. In this paper, its geological features and metallogenic background are introduced. The volcanic dynamics,physical-chemical conditions of metallogeny and ore-forming experimental simulation are discussed in detail. Based on the existence of paleovolcanic activity, the protolith characters and geochemistry of ore-bearing rock series, the authors study the law of volcanic activity in Middle Devonian period. The Physical-chemical conditions of metallogeny. including temperature, pressure, pH and Eh of mineralizing solution, are also determined. The evolution of salinity, f(O2), pH, M (H2S), M(SO2-4) (M is mole fraction of certain component ), t (temperature) and a(ionic activity)of mineralizing solution suggests that the mineralization was a long-term dynamic process. Finally, the metallogenic pattern is established. 展开更多
关键词 Ag-Pb polymetallic ore deposit metallogenic dynamics metallogenic model.
下载PDF
Analysis on Prospecting Potential of Tungsten Polymetallic Ore in Haergeng of Gonghe County, Qinghai Province
11
作者 LI Peng ZHOU Ting YIN Minghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期179-180,共2页
The discovery of Gonghe County Haergeng tungsten polymetallic deposit is one of the most important tungsten deposits discovered in Qinghai Province in recent years.It has important theoretical and practicalsignificanc... The discovery of Gonghe County Haergeng tungsten polymetallic deposit is one of the most important tungsten deposits discovered in Qinghai Province in recent years.It has important theoretical and practicalsignificance.1 Regional geological background The research area lies in the northwest edge of 展开更多
关键词 area Qinghai Province Analysis on Prospecting Potential of Tungsten polymetallic ore in Haergeng of Gonghe County
下载PDF
METALLOGENIC SYSTEM OF DACHANG TIN- POLYMETALLIC ORE FIELD
12
作者 WU Xiang bin 1,2 , DAI Ta gen 1, WANG Zhi bin 1, FANG Sheng kui 2 (1. Institute of Geology, Central South University, Changsha 410083, China 2. Liouzhou Huaxi Co. Ltd., Liouzhou 545006, China) 《Geotectonica et Metallogenia》 2001年第1期153-155,共3页
The Dachang tin polymetallic ore field in northern Guangxi, China, lies in a mid late Paleozoic rift that borders up the southern boundary of the Jiangnan Xuefeng Massif. As a giant ore deposit, it deposited in middle... The Dachang tin polymetallic ore field in northern Guangxi, China, lies in a mid late Paleozoic rift that borders up the southern boundary of the Jiangnan Xuefeng Massif. As a giant ore deposit, it deposited in middle of the Nandang Hechi metallogenic zone. The ore hosting strata are of the Devonion, which shows the evident characteristics of polymetallic elements, i.e., Sn, Zn, Pb, Sb, As, Cu, Ag, In, Ge, Cd, et al., and over 1 000 000 t tin reserves. 展开更多
关键词 ROCK ore polymetallic ore FIELD METALLOGENIC SYSTEM OF DACHANG TIN
下载PDF
A PRELIMINARY STUDY ON METALLOGENESIS OF THE LAMASU COPPER POLYMETALLIC ORE DEPOSIT, XINJIANG
13
作者 LAI Jian qing, PENG Sheng lin, SHAO Yong jun, WANG He (Institute of Geology, Central South University, Changsha 410083, China) 《Geotectonica et Metallogenia》 2001年第1期156-159,共4页
The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodo... The Lamasu copper polymetallic mineralized region lies in the south of Wenquan County, Xinjiang and in the Northwest lakeside of the Sailimu Lake. Seen from the geotectonic position, it belongs to North Tianshan geodome system, Tianshan diwa region, Central Asian crustobody. Copper and zinc polymetallic ore bodies had been formed in the skarn of the contact, between the metamophic carbonate rocks of the Kuximqiek Group, Jixian System and early mid Varisean acidic rockbodies. The formation of the ore deposit was the result of the successive activities of the crust and mantle and the tectonic and magmatic activities. 展开更多
关键词 ROCK A PRELIMINARY STUDY ON METALLOGENESIS OF THE LAMASU COPPER polymetallic ore DEPOSIT XINJIANG ore
下载PDF
Diversity of Mineralization and Spectrum of the Gejiu Superlarge Tin-Copper Polymetallic Deposit,Yunnan,China 被引量:10
14
作者 张寿庭 夏庆霖 +1 位作者 赵鹏大 高阳 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期363-370,共8页
The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displ... The Gejiu (个旧) deposit is a superlarge tin-copper polymetallic ore-forming concentration area characterized by excellent metallogenic geological settings and advantageous ore-controlling factors. The deposit displays diverse mineralization properties due to different minerals and mineral deposit types. Based on the principal metallogenic factors, metallogenic mechanisms, mineralized components, and occurrence of mineral deposits or ore bodies, the Gejiu mineral district can be divided into 2 combinations of metallogenic series, 4 metallogenic series, 8 subseries, and 27 mineral deposit types. Spatial zonality is evident. The distribution regularity of the elements in both plane and section is Be-W, Sn (Cu, Mo, Bi, Be)-Sn, Pb, Ag-Pb, Zn around a granitic intrusion. The metallogenic epoch is mainly concentrated in the late Yanshanian. During this period, large-scale metallogenic processes related to movement caused by tectonics and magmatism occurred, and a series of magmatic hydrothermal deposits formed. The ore-forming processes can be divided into 4 stages: the silicate stage, the oxide stage, the sulphide stage, and the carbonate stage. Based on the orderliness and diversity (in terms of time, space, and genesis) of the mineralization, the authors have developed a comprehensive spectrum of ore deposits in the Gejiu area. This newly proposed diversity of mineralization and the spectrum developed in this work are useful not only for interpreting the genesis of the Gejiu deposit but also for improving mineral exploration in the area, and in particular, for finding large deposits. 展开更多
关键词 tin-copper polymetallic deposit mineralization diversity spectrum of ore deposit Gejiu
下载PDF
Analysis of prospecting polymetallic metallogenic belts by comprehensive geophysical method 被引量:2
15
作者 XIA Fan SONG Hong-wei +2 位作者 WANG Meng WANG Hong-liang CHEN Yu 《Journal of Groundwater Science and Engineering》 2019年第3期237-244,共8页
This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysi... This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work. 展开更多
关键词 Manzhouli HIGH-PRECISION magnetic measurement Middle-gradient method IP field PROSPECTING Controlled source audio-frequency MAGNETOTELLURICS polymetallic oreS
下载PDF
GEOLOGICAL FEATURES AND ORE- FORMING MODEL OF THE SHIZHUYUAN W-SN-MO-BI ORE DEPOSIT,HUNAN PROVINCE,CHINA
16
作者 YIN Bing (The Shizhuyuan Mine,Chenzhou 423037,Hunan,China) 《Geotectonica et Metallogenia》 2000年第1期75-78,共4页
The Shizhuyuan W,Sn,Mo and Bi polymetallic ore deposit is one of the world famous superlarge ore deposits.The paper briefly introduced the geological setting and features of the ore deposit.Further,an ore- forming mo... The Shizhuyuan W,Sn,Mo and Bi polymetallic ore deposit is one of the world famous superlarge ore deposits.The paper briefly introduced the geological setting and features of the ore deposit.Further,an ore- forming model was put forward at the end of the paper. 展开更多
关键词 SHIZHUYUAN polymetallic ore deposit GEOLOGICAL feature ore- FORMING model
下载PDF
Fission track evidence on thermal history of Jiama polymetallic ore district,Tibet 被引量:1
17
作者 袁万明 侯增谦 +1 位作者 李胜荣 王世成 《Science China Earth Sciences》 SCIE EI CAS 2001年第S1期139-145,共7页
It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well ... It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well as its periphery. The FT ages of apatites in the ore district are (16.1±0.9) Ma and (18.8±1.1) Ma and reflect the age of late period of hydrothermal mineralizing event. Apatite FT age of (22.0±4.3) Ma and zircon FT age of (20.9±2.0) Ma are related to the early period of mineralization. Another zircon FT age of (341.6±79.1) Ma, inheriting mineral source characteristic, has no connection with the mineralization. Based on the thermal history analysis, the mineralization began before 25-22 Ma. Cooling rate in the ore district is 5-6℃/Ma averagely, in which a slow cooling occurred at 90-80℃. About 2.7 km has been denuded and the denudation rate is higher than the uplifting rate. 展开更多
关键词 : FISSION track thermal history JIAMA polymetallic ore.
原文传递
Rubidium Tin Polymetallic Ore Exploring Project of Tiantangshan Mine Area was Selected As 2019 Key Projects In Guangdong
18
《China Nonferrous Metals Monthly》 2019年第6期7-8,共2页
Recently,Guangdong Development and Reform Commission released Guangdong 2019 Key Construction Projects Plan,which consists of 1170provincial-level key projects and 628 provinciallevel key preparatory projects of which... Recently,Guangdong Development and Reform Commission released Guangdong 2019 Key Construction Projects Plan,which consists of 1170provincial-level key projects and 628 provinciallevel key preparatory projects of which the preliminary work is being carried out.'Rubidium Tin Polymetallic Ore Exploring Project of Tiantangshan Mine Area,Mabugang,Longchuan County,Guangdong”owned by Guangdong Guangding Mining Group was selected into this Plan. 展开更多
关键词 Key PROJECT RUBIDIUM TIN polymetallic ore EXPLORING PROJECT of Tiantangshan Mine Area was SELECTED As 2019 Key Projects In GUANGDONG
原文传递
Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen 被引量:25
19
作者 CHEN GuoHua SHU LiangShu +2 位作者 SHU LiMin ZHANG Cheng OUYANG YongPeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期803-823,共21页
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac... The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage". 展开更多
关键词 Tungsten(copper) polymetallic deposit Late Mesozoic granites Carboniferous-Permian carbonate rocks Skarn mineralization Zhuxi ore deposit Eastern Jiangnan Orogen
原文传递
Optimal bandwidth selection for retrieving Cu content in rock based on hyperspectral remote sensing
20
作者 MA Xiumei ZHOU Kefa +4 位作者 WANG Jinlin CUI Shichao ZHOU Shuguang WANG Shanshan ZHANG Guanbin 《Journal of Arid Land》 SCIE CSCD 2022年第1期102-114,共13页
Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecti... Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecting the optimal bandwidth for the hyperspectral inversion of metal element contents in rocks,the influence of bandwidth on the inversion accuracy are ignored.In this study,we collected 258 rock samples in and near the Kalatage polymetallic ore concentration area in the southwestern part of Hami City,Xinjiang Uygur Autonomous Region,China and measured the ground spectra of these samples.The original spectra were resampled with different bandwidths.A Partial Least Squares Regression(PLSR)model was used to invert Cu contents of rock samples and then the influence of different bandwidths on Cu content inversion accuracy was explored.According to the results,the PLSR model obtains the highest Cu content inversion accuracy at a bandwidth of 35 nm,with the model determination coefficient(R^(2))of 0.5907.The PLSR inversion accuracy is relatively unaffected by the bandwidth within 5-80 nm,but the accuracy decreases significantly at 85 nm bandwidth(R^(2)=0.5473),and the accuracy gradually decreased at bandwidths beyond 85 nm.Hence,bandwidth has a certain impact on the inversion accuracy of Cu content in rocks using the PLSR model.This study provides an indicator argument and theoretical basis for the future design of hyperspectral sensors for rock geochemistry. 展开更多
关键词 hyperspectral remote sensing Cu element BANDWIDTH Partial Least Squares Regression inversion accuracy Kalatage polymetallic ore concentration area
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部