期刊文献+
共找到133,387篇文章
< 1 2 250 >
每页显示 20 50 100
三维互穿结构Cu-W触头抗熔焊机理
1
作者 韩颖 吴世齐 +3 位作者 宋博文 安辉 齐丽君 陆艳君 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期515-525,共11页
触头闭合回跳电弧引起的开关电器动熔焊问题,直接影响大功率接触器的电寿命和可靠性。为此设计了2种三维互穿有序结构的四边形和菱形十二面体的Cu-W复合材料触头,围绕触头动熔焊过程中的电弧、熔池、液滴溅射及凝固相变降温等问题,建立... 触头闭合回跳电弧引起的开关电器动熔焊问题,直接影响大功率接触器的电寿命和可靠性。为此设计了2种三维互穿有序结构的四边形和菱形十二面体的Cu-W复合材料触头,围绕触头动熔焊过程中的电弧、熔池、液滴溅射及凝固相变降温等问题,建立触头熔池流体动力学模型和冷凝降温数学模型,研究了2种有序结构和商用无序结构的触头阳极在闭合回跳电弧作用下熔化温度分布、熔池喷溅形貌和接触区域金属凝固过程,通过模拟熔焊实验平台进行了熔焊力验证。结果表明,通过调节三维互穿有序W骨架结构,能够有效抑制熔池扩散和液态金属喷溅,并降低熔焊力,从而提高Cu-W复合材料的抗熔焊性能。 展开更多
关键词 三维互穿结构 cu-w复合材料 熔化喷溅 熔池凝固 熔焊力
下载PDF
组合靶共溅射沉积Cu-W复合薄膜的结构与性能
2
作者 郭中正 闫万珺 +3 位作者 张殿喜 杨秀凡 蒋宪邦 周丹彤 《电镀与精饰》 CAS 北大核心 2024年第4期38-45,共8页
用嵌入组合型靶材,采用磁控共溅射方法,在单晶硅和聚酰亚胺衬底上制备Cu-W复合薄膜。分别运用能谱仪、X射线衍射仪、扫描电镜和原子力显微镜对Cu-W复合薄膜的成份、结构及表面形貌进行分析表征。选用微小力测试系统、纳米压痕仪及四探... 用嵌入组合型靶材,采用磁控共溅射方法,在单晶硅和聚酰亚胺衬底上制备Cu-W复合薄膜。分别运用能谱仪、X射线衍射仪、扫描电镜和原子力显微镜对Cu-W复合薄膜的成份、结构及表面形貌进行分析表征。选用微小力测试系统、纳米压痕仪及四探针仪分别测试复合薄膜的屈服强度σ_(0.2)和裂纹萌生临界应变ε_(c)、显微硬度H及电阻率ρ。结果表明:可通过调整组合型靶材环状溅射刻蚀区内W靶所占的面积比,有效地调控复合薄膜的W含量。随W靶的面积占比从6%增至30%,Cu-W复合薄膜的W含量从2.6 at.%增至16.9 at.%。W在Cu中的固溶度延展,复合膜内存在面心立方(fcc)Cu(W)亚稳固溶体,随复合膜中W含量增加,W在Cu中的固溶度从1.7 at.%W增至10 at.%W,复合膜的平均晶粒从32 nm减小至16 nm,表面光洁度提高。W含量增加时,复合膜的屈服强度σ_(0.2)、显微硬度H及电阻率ρ增加,而裂纹萌生临界应变ε_(c)减小。 展开更多
关键词 组合靶 共溅射 cu-w复合薄膜
下载PDF
镶嵌靶磁控溅射Cu-W薄膜的结构与力学性能
3
作者 郭中正 闫万珺 +3 位作者 张殿喜 杨秀凡 蒋宪邦 周丹彤 《材料保护》 CAS CSCD 2024年第3期166-174,共9页
为研究W含量对Cu-W薄膜的结构与力学性能的影响,用磁控溅射工艺制备Cu-W薄膜,靶材为镶嵌组合型。薄膜的成份、结构、表面形貌分别选用能谱仪(EDS)、X射线衍射仪(XRD)和高分辨透射电镜(HRTEM)、扫描电镜(SEM)及原子力显微镜(AFM)进行表... 为研究W含量对Cu-W薄膜的结构与力学性能的影响,用磁控溅射工艺制备Cu-W薄膜,靶材为镶嵌组合型。薄膜的成份、结构、表面形貌分别选用能谱仪(EDS)、X射线衍射仪(XRD)和高分辨透射电镜(HRTEM)、扫描电镜(SEM)及原子力显微镜(AFM)进行表征。薄膜屈服强度σ_(0.2)和裂纹萌生临界应变ε_(c)、弹性模量E及显微硬度H分别用微小力测试系统和纳米压痕仪进行测试。结果表明,调整W靶的面积占比即可控制薄膜成分,当W靶的面积占比从5%增至25%时,Cu-W薄膜的W含量(原子分数)从2.30%逐渐提高到15.10%,且薄膜中存在fcc Cu(W)亚稳准固溶体。随W含量的增加,Cu-W薄膜的平均晶粒尺寸从28 nm逐渐减小至18 nm,准固溶度从1.30%(原子分数)W逐渐增至9.50%W,薄膜的表面光洁度提高。随W含量的增加,Cu-W薄膜的屈服强度σ_(0.2)和显微硬度H提高较为明显,弹性模量E稍有增加,而裂纹萌生临界应变ε_(c)则减小。Cu-15.10%W薄膜具有最小的平均晶粒尺寸和最高的表面光洁度,其屈服强度、硬度及弹性模量值最高(σ_(0.2)=0.86 GPa、H=6.1 GPa、E=123.5 GPa),裂纹萌生临界应变ε_(c)值为0.84%,综合力学性能最好。 展开更多
关键词 磁控溅射 cu-w薄膜 结构 力学性能
下载PDF
Design of high-temperature superconductors at moderate pressures by alloying AlH3 or GaH3
4
作者 Xiaowei Liang Xudong Wei +4 位作者 Eva Zurek Aitor Bergara Peifang Li Guoying Gao Yongjun Tian 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期94-103,共10页
Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achiev... Since the discovery of hydride superconductors,a significant challenge has been to reduce the pressure required for their stabilization.In this context,we propose that alloying could be an effective strategy to achieve this.We focus on a series of alloyed hydrides with the AMH_(6)composition,which can be made via alloying A15 AH_(3)(A=Al or Ga)with M(M=a group IIIB or IVB metal),and study their behavior under pressure.Seven of them are predicted to maintain the A15-type structure,similar to AH_(3)under pressure,providing a platform for studying the effects of alloying on the stability and superconductivity of AH_(3).Among these,the A15-type phases of AlZrH_(6)and AlHfH_(6)are found to be thermodynamically stable in the pressure ranges of 40–150 and 30–181 GPa,respectively.Furthermore,they remain dynamically stable at even lower pressures,as low as 13 GPa for AlZrH_(6)and 6 GPa for AlHfH_(6).These pressures are significantly lower than that required for stabilizing A15 AlH3.Additionally,the introduction of Zr or Hf increases the electronic density of states at the Fermi level compared with AlH3.This enhancement leads to higher critical temperatures(Tc)of 75 and 76 K for AlZrH_(6)and AlHfH_(6)at 20 and 10 GPa,respectively.In the case of GaMH_(6)alloys,where M represents Sc,Ti,Zr,or Hf,these metals reinforce the stability of the A15-type structure and reduce the lowest thermodynamically stable pressure for GaH_(3) from 160 GPa to 116,95,80,and 85 GPa,respectively.Particularly noteworthy are the A15-type GaMH_(6)alloys,which remain dynamically stable at low pressures of 97,28,5,and 6 GPa,simultaneously exhibiting high Tc of 88,39,70,and 49 K at 100,35,10,and 10 GPa,respectively.Overall,these findings enrich the family of A15-type superconductors and provide insights for the future exploration of high-temperature hydride superconductors that can be stabilized at lower pressures. 展开更多
关键词 alloying ALLOYS SUPERCONDUCTORS
下载PDF
Effect of solution treatment on the microstructure,phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying
5
作者 Rui Xi Hao Jiang +5 位作者 Guichuan Li Zhihui Zhang Huiliang Wei Guoqun Zhao Jan Van Humbeeck Xiebin Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期202-223,共22页
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap... Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts. 展开更多
关键词 shape memory alloy NiTiNb laser powder bed fusion in-situ alloying heat treatment
下载PDF
Review of Sc microalloying effects in Al-Cu alloys
6
作者 Shenghua Wu Chong Yang +7 位作者 Peng Zhang Hang Xue Yihan Gao Yuqing Wang Ruihong Wang Jinyu Zhang Gang Liu Jun Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1098-1114,共17页
Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a p... Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a purpose.In this paper,recent advances in lengthscale-dependent scandium (Sc) microalloying effects in Al-Cu model alloys are reviewed.In coarse-grained Al-Cu alloys,the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al_(2)Cu/matrix interface that reduces interfacial energy contribute significantly to θ′precipitation.By grain size refinement to the fine/ultrafine-grained scale,the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries,promoting the desired intragranular θ′precipitation.At nanocrystalline scale,the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu Sc,vacancy)-rich atomic complexes with high thermal stability,outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation.This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys. 展开更多
关键词 aluminum alloy microalloying effect length-scale dependence PRECIPITATION mechanical properties
下载PDF
Role of micro-Ca/In alloying in tailoring the microstructural characteristics and discharge performance of dilute Mg-Bi-Sn-based alloys as anodes for Mg-air batteries
7
作者 Fei-er Shangguan Wei-li Cheng +6 位作者 Yu-hang Chen Ze-qin Cui Hui Yu Hong-xia Wang Li-fei Wang Hang Li Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期251-266,共16页
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e... The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery. 展开更多
关键词 Mg-air batteries Mg-Bi-Sn based alloys Electrochemical behaviors Discharge properties
下载PDF
Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development
8
作者 Jiaqiang Li Hongtao Zhang +2 位作者 Jingtai Sun Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期826-832,共7页
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-... Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties. 展开更多
关键词 element substitution copper alloy solid solution strengthening microstructure and performance
下载PDF
Mitigated reaction kinetics between lithium metal anodes and electrolytes by alloying lithium metal with low-content magnesium
9
作者 Yang-Yang Wang Ya-Nan Wang +9 位作者 Nan Yao Shu-Yu Sun Xiao-Qing Ding Chen-Xi Bi Qian-Kui Zhang Zhao Zheng Cheng-Bin Jin Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期644-650,I0014,共8页
Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv... Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes. 展开更多
关键词 Lithium metal anodes alloying Anode/electrolyte interface Reaction kinetics Pouch cell
下载PDF
微观定向骨架结构Cu-W复合材料触头的抗动熔焊性能 被引量:1
10
作者 韩颖 王楠 +3 位作者 吴世齐 彭世东 侯春光 安跃军 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期5011-5021,共11页
触头闭合过程中回跳电弧的侵蚀会增加触头熔焊概率,甚至严重缩短接触器的使用寿命。为设计新型性能优良电接触材料,提高触头抗熔焊性能,首先设计了四边形、六边形、菱形十二面体3种微观定向骨架结构的Cu-W复合材料触头。然后基于磁流体... 触头闭合过程中回跳电弧的侵蚀会增加触头熔焊概率,甚至严重缩短接触器的使用寿命。为设计新型性能优良电接触材料,提高触头抗熔焊性能,首先设计了四边形、六边形、菱形十二面体3种微观定向骨架结构的Cu-W复合材料触头。然后基于磁流体动力学模型考虑电弧与阳极的能量传递建立了3维触头熔池模型,研究了触头阳极受电弧热力侵蚀过程,分析了触头表面的温度分布、熔池形貌,并进行了熔焊力预计。结果显示:微观定向骨架结构Cu-W复合材料触头受电弧侵蚀后,温度更低,形成的熔池体积更小,触头形变更小,与无序分布Cu-W复合材料触头相比展现出更好的抗电弧侵蚀能力。仿真与实验均表明,微观定向W骨架结构能够提升触头的导电、导热性能,降低强度,从而增强Cu-W复合材料触头的抗动熔焊性能。 展开更多
关键词 回跳电弧 cu-w复合材料 微观骨架结构 电弧侵蚀 抗动熔焊
下载PDF
微观定向结构Cu-W复合材料触头弹跳特性分析
11
作者 韩颖 黄镡 +1 位作者 刘东睿 侯春光 《电器与能效管理技术》 2023年第8期1-9,40,共10页
以商用无序结构Cu-W触头及3种微观定向结构Cu-W复合材料触头为研究对象,建立接触器触头弹跳动力学模型、电磁模型以及触头力学模型,实现接触器机电磁多物理场耦合仿真分析,研究3种微观定向结构和商用无序结构Cu-W触头承受载荷后的应力... 以商用无序结构Cu-W触头及3种微观定向结构Cu-W复合材料触头为研究对象,建立接触器触头弹跳动力学模型、电磁模型以及触头力学模型,实现接触器机电磁多物理场耦合仿真分析,研究3种微观定向结构和商用无序结构Cu-W触头承受载荷后的应力、应变差异,以及对触头弹跳的影响。最后,通过试验验证,发现微观定向结构触头的弹跳幅值更小,弹跳时间更短。结果表明微观定向结构Cu-W复合材料触头对比商用无序结构Cu-W触头具有良好的抗弹跳特性,其中菱形十二面体骨架结构Cu-W触头抗弹跳特性最优。 展开更多
关键词 cu-w复合材料 微观定向 接触器 触头弹跳
下载PDF
电触头用Cu-W合金的微观组织及抗烧蚀机理研究 被引量:3
12
作者 董博闻 吴振鹏 +2 位作者 接金川 康慧君 李廷举 《铜业工程》 CAS 2023年第4期63-70,共8页
通过熔渗法制备了真空断路器触头用Cu-70W,Cu-80W和Cu-90W(%,质量分数)合金,并通过激光烧蚀实验测试其抗烧蚀性能。通过实验验证及建立传热-流场耦合数学模型探究了Cu-W合金激光烧蚀过程,并解释了其抗烧蚀机理,阐明了W含量及激光功率对... 通过熔渗法制备了真空断路器触头用Cu-70W,Cu-80W和Cu-90W(%,质量分数)合金,并通过激光烧蚀实验测试其抗烧蚀性能。通过实验验证及建立传热-流场耦合数学模型探究了Cu-W合金激光烧蚀过程,并解释了其抗烧蚀机理,阐明了W含量及激光功率对合金烧蚀行为的影响机制。计算和实验结果表明,激光能量沿光斑中心向外呈高斯分布,合金中靠近光斑中心和远离光斑中心的区域由于受热量递减会分别蒸发和熔化。Cu-W合金局部受热熔化,激光加热区域附近将出现沿区域中心向外发散的温度梯度,显著影响周围流场,使中心高温气流向四周低温区域流动,从而使合金熔体飞溅。通过仿真计算及实验验证,发现W的烧蚀深度约为50μm,远低于Cu的烧蚀深度(>100μm),表明高熔点的富W相可以通过减小烧蚀深度来显著提高Cu-W合金的耐烧蚀性。计算与实验结果呈现较高的匹配性,这将有助于数学模型在合金激光加工领域的应用。 展开更多
关键词 cu-w合金 激光烧蚀 抗烧蚀 传热-流场
下载PDF
Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review 被引量:4
13
作者 Na Xiao Xu Guan +7 位作者 Dong Wang Haile Yan Minghui Cai Nan Jia Yudong Zhang Claude Esling Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1667-1679,共13页
Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c... Face-centered cubic (f.c.c.) high entropy alloys (HEAs) are attracting more and more attention owing to their excellent strength and ductility synergy, irradiation resistance, etc. However, the yield strength of f.c.c. HEAs is generally low, significantly limiting their practical applications. Recently, the alloying of W has been evidenced to be able to remarkably improve the mechanical properties of f.c.c. HEAs and is becoming a hot topic in the community of HEAs. To date, when W is introduced, multiple strengthening mechanisms, including solid-solution strengthening, precipitation strengthening (μphase,σphase, and b.c.c. phase), and grain-refinement strengthening, have been discovered to be activated or enhanced. Apart from mechanical properties, the addition of W improves corrosion resistance as W helps to form a dense WO_(3) film on the alloy surface. Until now, despite the extensive studies in the literature, there is no available review paper focusing on the W doping of the f.c.c. HEAs. In that context, the effects of W doping on f.c.c. HEAs were reviewed in this work from three aspects, i.e., microstructure,mechanical property, and corrosion resistance. We expect this work can advance the application of the W alloying strategy in the f.c.c. HEAs. 展开更多
关键词 high-entropy alloys lattice distortion W doping mechanical property precipitation
下载PDF
Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction 被引量:1
14
作者 Jinsen Tian Yuanchao Hu +5 位作者 Wenfei Lu Jiahua Zhu Xiaodi Liu Jun Shen Gang Wang Jan Schroers 《Carbon Energy》 SCIE CSCD 2023年第8期87-97,共11页
Development of an electrocatalyst that is cheap and has good properties to replace conventional noble metals is important for H_(2) applications.In this study,dealloying of an amorphous Ti_(37)Cu_(60)Ru_(3) alloy was ... Development of an electrocatalyst that is cheap and has good properties to replace conventional noble metals is important for H_(2) applications.In this study,dealloying of an amorphous Ti_(37)Cu_(60)Ru_(3) alloy was performed to prepare a freestanding nanostructured hydrogen evolution reaction(HER)catalyst.The effect of dealloying and addition of Ru to TiCu alloys on the microstructure and HER properties under alkaline conditions was investigated.3 at.%Ru addition in Ti_(40)Cu_(60) decreases the overpotential to reach a current density of 10mA cm^(-2) and Tafel slope of the dealloyed samples to 35 and 34mV dec−1.The improvement of electrocatalytic properties was attributed to the formation of a nanostructure and the modification of the electronic structure of the catalyst.First-principles calculations based on density function theory indicate that Ru decreases the Gibbs free energy of water dissociation.This work presents a method to prepare an efficient electrocatalyst via dealloying of amorphous alloys. 展开更多
关键词 amorphous alloy DEalloying first-principles calculations HER TiCuRu
下载PDF
Influences of Milling Time and NbC on Microstructure of AlCoCrFeNi_(2.1)High Entropy Alloy by Mechanical Alloying
15
作者 LI Li JIANG Hui +3 位作者 NI Zhiliang HAN Kaiming WANG Rui WANG Haixia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期423-429,共7页
AlCoCrFeNi_(2.1)eutectic high entropy alloy(EHEA)and AlCoCrFeNi_(2.1)-x NbC(x=2.5wt%,5.0wt%,7.5wt%,and 10wt%)high entropy alloy(HEAs)were prepared by mechanical alloying(MA).The effects of milling time and NbC content... AlCoCrFeNi_(2.1)eutectic high entropy alloy(EHEA)and AlCoCrFeNi_(2.1)-x NbC(x=2.5wt%,5.0wt%,7.5wt%,and 10wt%)high entropy alloy(HEAs)were prepared by mechanical alloying(MA).The effects of milling time and NbC content on the alloying behavior and grain size of the AlCoCrFeNi_(2.1)EHEA were investigated.The experimental results show that the AlCoCrFeNi_(2.1)EHEA primarily consists of order BCC(B2)and face-centered-cubic(FCC)phases,while the AlCoCrFeNi_(2.1)-x NbC(x=2.5wt%,5.0wt%,7.5wt%,and 10wt%)HEAs are composed of B2,FCC,and NbC phases.With the increase of milling time,the powder goes through three stages,irregularity,cold welding fracture and spheroidization.The particle size of AlCoCrFeNi_(2.1)EHEA powder shows a trend of first increasing and then decreasing.Therein,the particle size presents a normal distribution during 0-50 h alloying.With the addition of NbC,the AlCoCrFeNi_(2.1)-x NbC HEAs powders are significantly refined.And the degree of grain refinement gradually increases with the increase of NbC content. 展开更多
关键词 utectic high entropy alloy mechanical alloying alloying behavior grain size
下载PDF
Electrochemical CO_(2) reduction:Progress and opportunity with alloying copper
16
作者 Mao Ding Zhaoyang Chen +6 位作者 Chunxiao Liu Youpeng Wang Chengbo Li Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Materials Reports(Energy)》 2023年第1期35-50,I0002,共17页
Electroreduction of carbon dioxide(CO_(2)) into value-added chemicals offers an entrancing approach to main-taining the global carbon cycle and eliminating environmental threats.A key obstacle to achieving long-term a... Electroreduction of carbon dioxide(CO_(2)) into value-added chemicals offers an entrancing approach to main-taining the global carbon cycle and eliminating environmental threats.A key obstacle to achieving long-term and large-scale implementation of electrochemical CO_(2) reduction technology is the lack of active and selective cat-alysts.Copper(Cu)is one of the few candidates that can facilitate C–C coupling to obtain high-energy oxygenates and hydrocarbons beyond carbon monoxide(CO),but it suffers from poor selectivity for products of interest and high overpotentials.Alloying is an effective way to break the linear scaling relations and uniquely manipulate the reactivity and selectivity,which is hard to achieve by using monometallic compositions alone.By alloying Cu with other metals,one could change the catalytic properties of the catalyst by tuning the local electronic structure and modulating the adsorption strength of the reaction intermediates,thus improving the catalytic activity and selectivity.In this review,we focus on the recently developed Cu-based alloy catalysts(including conventional alloys,high-entropy alloys and single-atom alloys)that have been applied in electrocatalytic CO_(2) reduction(ECR).Theoretical calculations and experimental advances in understanding the key rate-limiting and selectivity-determining steps in those alloys are summarized,with a particular focus on identifying binding energy de-scriptors and the dynamic product formation mechanisms.In addition,we outline the opportunities and chal-lenges in the fundamental understanding of ECR by recommending advanced in-situ characterization techniques and standardized electrochemical methods and offer atomic-level design principles for steering the reaction pathways to the desired products. 展开更多
关键词 ELECTROCATALYSIS CO_(2) reduction Selectivity Copper alloys High-entropy alloys Single-atom alloys
下载PDF
Investigation on influence of alloying on phase transitions of duplex stainless steel based on thermochemical calculation
17
作者 张志强 刘博 +3 位作者 徐连勇 韩永典 赵雷 曲思成 《China Welding》 CAS 2023年第4期11-28,共18页
This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the m... This paper investigated on influence of different alloying elements added into duplex stainless steel (DSS) on phase transitions using thermochemical methods in comparison with experiment.The results showed that the most possible species in the ferrite phase,austenite phase,σphase,Hcp phase,χphase,and carbide were Cr:Va-type,Fe:Va-type,Ni:Cr:Mo-type,Cr_(2)N-type,Fe_(24)Mo_(10)Cr_(24)-type,and Cr:Mo:C-type,respectively.Furthermore,the Ni,N,Cr,and Mo alloying had significant influences on the transition of each DSS phase.The Ni and N additions obviously raised the temperature at ferrite-1/austenite-1 balance while the Cr and Mo decreased the dual-phase balance temperature.In addition,the Ni addition can promote the precipitating ofσphase at relatively high temperature while the precipitating of Hcp phase at relatively low temperature.The Hcp phase andχphase can be obviously increased by the N addition.The introduction of Cr and Mo notably enhances the precipitation ofσphase.However,the promotion ofχphase precipitation is facilitated by the presence of Mo,while the Cr element acts as an inhibitor forχphase precipitation.Furthermore,the ferrite/austenite ratio tested by experiment was higher than that calculated by thermochemical methods,thus pre-designed solution temperature should be lower about 30-100℃than that calculated by thermochemical methods. 展开更多
关键词 phase transitions PRECIPITATION alloying THERMOCHEMISTRY duplex stainless steel
下载PDF
Li^(+)Solvation Mediated Interfacial Kinetic of Alloying Matrix for Stable Li Anodes
18
作者 Xingyi Wang Kailin Luo +6 位作者 Lixin Xiong Tengpeng Xiong Zhendong Li Jie Sun Haiyong He Chuying Ouyang Zhe Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regu... Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regulate Li deposition behavior and stabilize Li metal anode.Through constructing Li alloying matrix with a bi-functional silver(Ag)-Li_(3)N blended interface,fast Li^(+)conductivity and high Li affinity can be achieved simultaneously,resulting in both decreased Li nucleation and mass transfercontrolled overpotentials.Beyond these properties,a more important feature is demonstrated herein;that is,the inward diffusion depth of the Li adatoms inside of the Ag site can be restricted by the Li^(+)solvation structure in a highly coordinating environment.The latter feature can ensure the durability of the operational Ag sites,thereby elongating the Li protection ability of the Ag-Li_(3)N interface greatly.This work provides a deep insight into the synergetic effect of functional alloying structure and Li^(+)solvation mediated interfacial kinetic on Li metal protection. 展开更多
关键词 Li^(+)solvation structure Li-Ag alloy lithium metal anode lithium metal batteries SEI
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
19
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 Liquid metal dealloying Subsequent alloying Metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Al-Mg系合金中合金化元素作用及其对力学性能的影响 被引量:2
20
作者 赵飞 黄文森 《贵州师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-11,18,F0002,共13页
铝镁合金是轻量化材料应用领域中一种重要的金属材料,属于中高强度铝合金,具有较高的塑性、良好的耐蚀性以及优良的焊接性等优势,目前在航空航天、交通运输和军工制造等领域具有广阔的应用前景。笔者综述了铝镁合金力学性能特点以及用途... 铝镁合金是轻量化材料应用领域中一种重要的金属材料,属于中高强度铝合金,具有较高的塑性、良好的耐蚀性以及优良的焊接性等优势,目前在航空航天、交通运输和军工制造等领域具有广阔的应用前景。笔者综述了铝镁合金力学性能特点以及用途,介绍了Al-Mg系合金中的强化机制,重点阐述了Al-Mg系合金中主合金化元素Mg及其含量对合金微观组织和力学性能的影响规律及机理,详细论述了Mn、Zr、Ti、Sc、Er、Y等微合金化元素的作用以及对Al-Mg系合金微观组织和力学性能的影响规律。最后,结合Al-Mg系合金当前研究现状,提出了今后值得研究的方向。 展开更多
关键词 Al-Mg系合金 合金化 强化机制 力学性能
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部