The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ...The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.展开更多
This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review cove...This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.展开更多
The effect of repeated melting of the mother ingot on the thermal stabilityof a Zr_(60)Al_+(15)Ni_(25) glassy alloy was investigated by differential scanning calorimetry(DSC). Experimental results indicate that after ...The effect of repeated melting of the mother ingot on the thermal stabilityof a Zr_(60)Al_+(15)Ni_(25) glassy alloy was investigated by differential scanning calorimetry(DSC). Experimental results indicate that after the repeated melting of the ingots at 1300 and 1580K, the glass transition temperature T_g increases from 686.4 to 690.7 and 696.8 K and the onsettemperature of crystallization T_x from 757.9 to 758.6 and 763.4 K, respectively, indicating thatthe thermal stability becomes higher after the repeated arc melting of the mother ingot and that itis more effective at higher temperature. Within the framework of structure heredity, the origin ofthe improvement of the thermal stability of Zr_(60)Al_+(15)Ni_(25) bulk glassy alloy is discussed.展开更多
The bulk glassy Cu 60 Zr 30 Ti 10 alloy with a diameter up to 4 mm and a length of 70 mm containing nanocrystalline phase was successfully developed by using copper mold casting method. The temperature interval of the...The bulk glassy Cu 60 Zr 30 Ti 10 alloy with a diameter up to 4 mm and a length of 70 mm containing nanocrystalline phase was successfully developed by using copper mold casting method. The temperature interval of the supercooled liquid region before crystallization is above 37 K. The glass transition temperature ( T g) and the reduced glass transition temperature ( T g/ T l) of the cast bulk glassy Cu 60 Zr 30 Ti 10 alloy are 713 K and 0.62. The cast bulk glassy alloy, which has high glassy forming ability, shows expected mechanical properties. The elastic modulus, yield strength, fracture strength and elongation including elastic elongation are 114 GPa, 1 785 MPa, 2 150 MPa and 3.3% respectively in compressive deformation, and 112 GPa, 1 780 MPa, 2 000 MPa and 1.9% respectively in tensile deformation. High resolution transmission electron microscope (HRTEM) and nano beam electron diffraction (NBED) studies indicate that the cast metallic bulk glassy Cu 60 Zr 30 Ti 10 alloy consists of nanocrystals with a size of 4 nm embedded in glassy matrix. The nanoparticle is identified as CuZr and has point space group symmetry of pm3m and its lattice parameter is a =0.3 262 nm . The nanocrystalline phase grew up to 10 nm upon annealing at 430 ℃ for 10 min and caused the alloy brittle.展开更多
The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y...The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.展开更多
The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-f...The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-forming ability of Cu46.25Zr46.25Al7.5 alloy, and the glassy rod with a diameter of at least 12 mm can be formed. The glass transition temperature (Tg), temperature interval of su- percooled liquid region △Tx (=Tx-Tg), and reduced glass transition temperature Trg (=Tg/Tl) of Cu46.25Zr44.25Al7.5Er2 glassy alloy are 699 K, 62 K and 0.607, respectively.展开更多
基金Project(50971041)support by the National Natural Science Foundation of China
文摘The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.
基金supported by Guangdong Innovative Research Team Program (2009010005)
文摘This paper reviews the development of current research in bulk glassy alloys by focusing on the trigger point for the synthesis of the first bulk glassy alloys by the conventional mold casting method. This review covers the background, discovery, characteristics, and applications of bulk glassy alloys, as well as recent topics regarding them. Applications of bulk glassy alloys have been expanding, particularly for Fe-based bulk glassy alloys, due to their unique properties, high glass-forming ability, and low cost. In the near future, the engineering importance of bulk glassy alloys is expected to increase steadily, and continuous interest in these novel metallic materials for basic science research is anticipated.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50071032)
文摘The effect of repeated melting of the mother ingot on the thermal stabilityof a Zr_(60)Al_+(15)Ni_(25) glassy alloy was investigated by differential scanning calorimetry(DSC). Experimental results indicate that after the repeated melting of the ingots at 1300 and 1580K, the glass transition temperature T_g increases from 686.4 to 690.7 and 696.8 K and the onsettemperature of crystallization T_x from 757.9 to 758.6 and 763.4 K, respectively, indicating thatthe thermal stability becomes higher after the repeated arc melting of the mother ingot and that itis more effective at higher temperature. Within the framework of structure heredity, the origin ofthe improvement of the thermal stability of Zr_(60)Al_+(15)Ni_(25) bulk glassy alloy is discussed.
文摘The bulk glassy Cu 60 Zr 30 Ti 10 alloy with a diameter up to 4 mm and a length of 70 mm containing nanocrystalline phase was successfully developed by using copper mold casting method. The temperature interval of the supercooled liquid region before crystallization is above 37 K. The glass transition temperature ( T g) and the reduced glass transition temperature ( T g/ T l) of the cast bulk glassy Cu 60 Zr 30 Ti 10 alloy are 713 K and 0.62. The cast bulk glassy alloy, which has high glassy forming ability, shows expected mechanical properties. The elastic modulus, yield strength, fracture strength and elongation including elastic elongation are 114 GPa, 1 785 MPa, 2 150 MPa and 3.3% respectively in compressive deformation, and 112 GPa, 1 780 MPa, 2 000 MPa and 1.9% respectively in tensile deformation. High resolution transmission electron microscope (HRTEM) and nano beam electron diffraction (NBED) studies indicate that the cast metallic bulk glassy Cu 60 Zr 30 Ti 10 alloy consists of nanocrystals with a size of 4 nm embedded in glassy matrix. The nanoparticle is identified as CuZr and has point space group symmetry of pm3m and its lattice parameter is a =0.3 262 nm . The nanocrystalline phase grew up to 10 nm upon annealing at 430 ℃ for 10 min and caused the alloy brittle.
基金Project (2010ZDJH10) supported by the NUST Research FundingProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The effects of Y addition on the structural and mechanical properties of CuZrAl bulk metallic glass(BMG) were studied.The results show that the glass forming ability of CuZrAl system is improved by the addition of Y and the fracture strength decreases with Y addition due to the reduction of binding energy induced by Y.The fracture surface is dominated by vein-like patterns in Cu45Zr48Al7 bulk metallic glass,and changes to smooth regions in Cu46Zr42Al7Y5 BMG.TEM observation shows that Cu45Zr48Al7 BMG has a composite microstructure of nanocrystalline phases dispersed in amorphous matrix.However,the Cu46Zr42Al7Y5 BMG shows a fully amorphous structure.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001, and 50631010).
文摘The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-forming ability of Cu46.25Zr46.25Al7.5 alloy, and the glassy rod with a diameter of at least 12 mm can be formed. The glass transition temperature (Tg), temperature interval of su- percooled liquid region △Tx (=Tx-Tg), and reduced glass transition temperature Trg (=Tg/Tl) of Cu46.25Zr44.25Al7.5Er2 glassy alloy are 699 K, 62 K and 0.607, respectively.